OTB
9.0.0
Orfeo Toolbox
|
#include <otbSVMMachineLearningModel.h>
Public Types | |
typedef Superclass::ConfidenceValueType | ConfidenceValueType |
typedef itk::SmartPointer< const Self > | ConstPointer |
typedef Superclass::InputListSampleType | InputListSampleType |
typedef Superclass::InputSampleType | InputSampleType |
typedef Superclass::InputValueType | InputValueType |
typedef itk::SmartPointer< Self > | Pointer |
typedef Superclass::ProbaSampleType | ProbaSampleType |
typedef SVMMachineLearningModel | Self |
typedef MachineLearningModel< TInputValue, TTargetValue > | Superclass |
typedef Superclass::TargetListSampleType | TargetListSampleType |
typedef Superclass::TargetSampleType | TargetSampleType |
typedef Superclass::TargetValueType | TargetValueType |
Public Types inherited from otb::MachineLearningModel< TInputValue, TTargetValue > | |
typedef MachineLearningModel | Self |
typedef itk::Object | Superclass |
typedef itk::SmartPointer< Self > | Pointer |
typedef itk::SmartPointer< const Self > | ConstPointer |
typedef MLMSampleTraits< TInputValue >::ValueType | InputValueType |
typedef MLMSampleTraits< TInputValue >::SampleType | InputSampleType |
typedef itk::Statistics::ListSample< InputSampleType > | InputListSampleType |
typedef MLMTargetTraits< TTargetValue >::ValueType | TargetValueType |
typedef MLMTargetTraits< TTargetValue >::SampleType | TargetSampleType |
typedef itk::Statistics::ListSample< TargetSampleType > | TargetListSampleType |
typedef MLMTargetTraits< double >::ValueType | ConfidenceValueType |
typedef MLMTargetTraits< double >::SampleType | ConfidenceSampleType |
typedef itk::Statistics::ListSample< ConfidenceSampleType > | ConfidenceListSampleType |
typedef itk::VariableLengthVector< double > | ProbaSampleType |
typedef itk::Statistics::ListSample< ProbaSampleType > | ProbaListSampleType |
static Pointer | New () |
virtual ::itk::LightObject::Pointer | CreateAnother (void) const |
virtual const char * | GetNameOfClass () const |
void | Train () override |
void | Save (const std::string &filename, const std::string &name="") override |
void | Load (const std::string &filename, const std::string &name="") override |
Classification model file compatibility tests | |
cv::Ptr< cv::ml::SVM > | m_SVMModel |
int | m_SVMType |
int | m_KernelType |
double | m_Degree |
double | m_Gamma |
double | m_Coef0 |
double | m_C |
double | m_Nu |
double | m_P |
int | m_TermCriteriaType |
int | m_MaxIter |
double | m_Epsilon |
bool | m_ParameterOptimization |
double | m_OutputDegree |
double | m_OutputGamma |
double | m_OutputCoef0 |
double | m_OutputC |
double | m_OutputNu |
double | m_OutputP |
bool | CanReadFile (const std::string &) override |
bool | CanWriteFile (const std::string &) override |
virtual int | GetSVMType () |
virtual void | SetSVMType (int _arg) |
virtual int | GetKernelType () |
virtual void | SetKernelType (int _arg) |
virtual int | GetTermCriteriaType () |
virtual void | SetTermCriteriaType (int _arg) |
virtual int | GetMaxIter () |
virtual void | SetMaxIter (int _arg) |
virtual double | GetEpsilon () |
virtual void | SetEpsilon (double _arg) |
virtual double | GetDegree () |
virtual void | SetDegree (double _arg) |
virtual double | GetOutputDegree () |
virtual double | GetGamma () |
virtual void | SetGamma (double _arg) |
virtual double | GetOutputGamma () |
virtual double | GetCoef0 () |
virtual void | SetCoef0 (double _arg) |
virtual double | GetOutputCoef0 () |
virtual double | GetC () |
virtual void | SetC (double _arg) |
virtual double | GetOutputC () |
virtual double | GetNu () |
virtual void | SetNu (double _arg) |
virtual double | GetOutputNu () |
virtual double | GetP () |
virtual void | SetP (double _arg) |
virtual double | GetOutputP () |
virtual bool | GetParameterOptimization () |
virtual void | SetParameterOptimization (bool _arg) |
SVMMachineLearningModel () | |
~SVMMachineLearningModel () override=default | |
TargetSampleType | DoPredict (const InputSampleType &input, ConfidenceValueType *quality=nullptr, ProbaSampleType *proba=nullptr) const override |
void | PrintSelf (std::ostream &os, itk::Indent indent) const override |
SVMMachineLearningModel (const Self &)=delete | |
void | operator= (const Self &)=delete |
OpenCV implementation of SVM algorithm.
This machine learning model uses the OpenCV implementation of the SVM algorithm. Since this implementation is buggy in the linear case, we recommend users to use the LibSVM implementation instead, through the otb::LibSVMMachineLearningModel.
Definition at line 42 of file otbSVMMachineLearningModel.h.
typedef Superclass::ConfidenceValueType otb::SVMMachineLearningModel< TInputValue, TTargetValue >::ConfidenceValueType |
Definition at line 58 of file otbSVMMachineLearningModel.h.
typedef itk::SmartPointer<const Self> otb::SVMMachineLearningModel< TInputValue, TTargetValue >::ConstPointer |
Definition at line 50 of file otbSVMMachineLearningModel.h.
typedef Superclass::InputListSampleType otb::SVMMachineLearningModel< TInputValue, TTargetValue >::InputListSampleType |
Definition at line 54 of file otbSVMMachineLearningModel.h.
typedef Superclass::InputSampleType otb::SVMMachineLearningModel< TInputValue, TTargetValue >::InputSampleType |
Definition at line 53 of file otbSVMMachineLearningModel.h.
typedef Superclass::InputValueType otb::SVMMachineLearningModel< TInputValue, TTargetValue >::InputValueType |
Definition at line 52 of file otbSVMMachineLearningModel.h.
typedef itk::SmartPointer<Self> otb::SVMMachineLearningModel< TInputValue, TTargetValue >::Pointer |
Definition at line 49 of file otbSVMMachineLearningModel.h.
typedef Superclass::ProbaSampleType otb::SVMMachineLearningModel< TInputValue, TTargetValue >::ProbaSampleType |
Definition at line 59 of file otbSVMMachineLearningModel.h.
typedef SVMMachineLearningModel otb::SVMMachineLearningModel< TInputValue, TTargetValue >::Self |
Standard class typedefs.
Definition at line 47 of file otbSVMMachineLearningModel.h.
typedef MachineLearningModel<TInputValue, TTargetValue> otb::SVMMachineLearningModel< TInputValue, TTargetValue >::Superclass |
Definition at line 48 of file otbSVMMachineLearningModel.h.
typedef Superclass::TargetListSampleType otb::SVMMachineLearningModel< TInputValue, TTargetValue >::TargetListSampleType |
Definition at line 57 of file otbSVMMachineLearningModel.h.
typedef Superclass::TargetSampleType otb::SVMMachineLearningModel< TInputValue, TTargetValue >::TargetSampleType |
Definition at line 56 of file otbSVMMachineLearningModel.h.
typedef Superclass::TargetValueType otb::SVMMachineLearningModel< TInputValue, TTargetValue >::TargetValueType |
Definition at line 55 of file otbSVMMachineLearningModel.h.
|
protected |
Constructor
Definition at line 33 of file otbSVMMachineLearningModel.hxx.
References otb::MachineLearningModel< TInputValue, TTargetValue >::m_ConfidenceIndex, and otb::MachineLearningModel< TInputValue, TTargetValue >::m_IsRegressionSupported.
|
overrideprotecteddefault |
Destructor
|
privatedelete |
Is the input model file readable and compatible with the corresponding classifier ?
|
overridevirtual |
Is the input model file readable and compatible with the corresponding classifier ?
Implements otb::MachineLearningModel< TInputValue, TTargetValue >.
Definition at line 154 of file otbSVMMachineLearningModel.hxx.
References CV_TYPE_NAME_ML_SVM.
|
overridevirtual |
Is the input model file writable and compatible with the corresponding classifier ?
Implements otb::MachineLearningModel< TInputValue, TTargetValue >.
Definition at line 181 of file otbSVMMachineLearningModel.hxx.
virtual::itk::LightObject::Pointer otb::SVMMachineLearningModel< TInputValue, TTargetValue >::CreateAnother | ( | void | ) | const |
Run-time type information (and related methods).
|
overrideprotected |
Predict values using the model
Definition at line 114 of file otbSVMMachineLearningModel.hxx.
|
virtual |
Is the input model file readable and compatible with the corresponding classifier ?
|
virtual |
Is the input model file readable and compatible with the corresponding classifier ?
|
virtual |
Is the input model file readable and compatible with the corresponding classifier ?
|
virtual |
Is the input model file readable and compatible with the corresponding classifier ?
|
virtual |
Is the input model file readable and compatible with the corresponding classifier ?
|
virtual |
Is the input model file readable and compatible with the corresponding classifier ?
|
virtual |
Is the input model file readable and compatible with the corresponding classifier ?
|
virtual |
Run-time type information (and related methods).
|
virtual |
Is the input model file readable and compatible with the corresponding classifier ?
|
virtual |
Is the input model file readable and compatible with the corresponding classifier ?
|
virtual |
Is the input model file readable and compatible with the corresponding classifier ?
|
virtual |
Is the input model file readable and compatible with the corresponding classifier ?
|
virtual |
Is the input model file readable and compatible with the corresponding classifier ?
|
virtual |
Is the input model file readable and compatible with the corresponding classifier ?
|
virtual |
Is the input model file readable and compatible with the corresponding classifier ?
|
virtual |
Is the input model file readable and compatible with the corresponding classifier ?
|
virtual |
Is the input model file readable and compatible with the corresponding classifier ?
|
virtual |
Is the input model file readable and compatible with the corresponding classifier ?
|
virtual |
Is the input model file readable and compatible with the corresponding classifier ?
|
overridevirtual |
Load the model from file
Implements otb::MachineLearningModel< TInputValue, TTargetValue >.
Definition at line 147 of file otbSVMMachineLearningModel.hxx.
|
static |
Run-time type information (and related methods).
|
privatedelete |
Is the input model file readable and compatible with the corresponding classifier ?
|
overrideprotected |
PrintSelf method
Definition at line 187 of file otbSVMMachineLearningModel.hxx.
|
overridevirtual |
Save the model to file
Implements otb::MachineLearningModel< TInputValue, TTargetValue >.
Definition at line 137 of file otbSVMMachineLearningModel.hxx.
|
virtual |
Is the input model file readable and compatible with the corresponding classifier ?
|
virtual |
Is the input model file readable and compatible with the corresponding classifier ?
|
virtual |
Is the input model file readable and compatible with the corresponding classifier ?
|
virtual |
Is the input model file readable and compatible with the corresponding classifier ?
|
virtual |
Is the input model file readable and compatible with the corresponding classifier ?
|
virtual |
Is the input model file readable and compatible with the corresponding classifier ?
|
virtual |
Is the input model file readable and compatible with the corresponding classifier ?
|
virtual |
Is the input model file readable and compatible with the corresponding classifier ?
|
virtual |
Is the input model file readable and compatible with the corresponding classifier ?
|
virtual |
Is the input model file readable and compatible with the corresponding classifier ?
|
virtual |
Is the input model file readable and compatible with the corresponding classifier ?
|
virtual |
Is the input model file readable and compatible with the corresponding classifier ?
|
overridevirtual |
Train the machine learning model
Implements otb::MachineLearningModel< TInputValue, TTargetValue >.
Definition at line 61 of file otbSVMMachineLearningModel.hxx.
References CV_VAR_CATEGORICAL, and CV_VAR_NUMERICAL.
|
private |
Is the input model file readable and compatible with the corresponding classifier ?
Definition at line 156 of file otbSVMMachineLearningModel.h.
|
private |
Is the input model file readable and compatible with the corresponding classifier ?
Definition at line 155 of file otbSVMMachineLearningModel.h.
|
private |
Is the input model file readable and compatible with the corresponding classifier ?
Definition at line 153 of file otbSVMMachineLearningModel.h.
|
private |
Is the input model file readable and compatible with the corresponding classifier ?
Definition at line 161 of file otbSVMMachineLearningModel.h.
|
private |
Is the input model file readable and compatible with the corresponding classifier ?
Definition at line 154 of file otbSVMMachineLearningModel.h.
|
private |
Is the input model file readable and compatible with the corresponding classifier ?
Definition at line 152 of file otbSVMMachineLearningModel.h.
|
private |
Is the input model file readable and compatible with the corresponding classifier ?
Definition at line 160 of file otbSVMMachineLearningModel.h.
|
private |
Is the input model file readable and compatible with the corresponding classifier ?
Definition at line 157 of file otbSVMMachineLearningModel.h.
|
private |
Is the input model file readable and compatible with the corresponding classifier ?
Definition at line 167 of file otbSVMMachineLearningModel.h.
|
private |
Is the input model file readable and compatible with the corresponding classifier ?
Definition at line 166 of file otbSVMMachineLearningModel.h.
|
private |
Is the input model file readable and compatible with the corresponding classifier ?
Definition at line 164 of file otbSVMMachineLearningModel.h.
|
private |
Is the input model file readable and compatible with the corresponding classifier ?
Definition at line 165 of file otbSVMMachineLearningModel.h.
|
private |
Is the input model file readable and compatible with the corresponding classifier ?
Definition at line 168 of file otbSVMMachineLearningModel.h.
|
private |
Is the input model file readable and compatible with the corresponding classifier ?
Definition at line 169 of file otbSVMMachineLearningModel.h.
|
private |
Is the input model file readable and compatible with the corresponding classifier ?
Definition at line 158 of file otbSVMMachineLearningModel.h.
|
private |
Is the input model file readable and compatible with the corresponding classifier ?
Definition at line 162 of file otbSVMMachineLearningModel.h.
|
private |
Is the input model file readable and compatible with the corresponding classifier ?
Definition at line 150 of file otbSVMMachineLearningModel.h.
|
private |
Is the input model file readable and compatible with the corresponding classifier ?
Definition at line 151 of file otbSVMMachineLearningModel.h.
|
private |
Is the input model file readable and compatible with the corresponding classifier ?
Definition at line 159 of file otbSVMMachineLearningModel.h.