[1] A. Abdellaoui and A. Rougab. Caractérisation de la reponse du bâti: application au
complexe urbain de Blida (Algérie). In
[2] A. Alexandrescu.
[3] M. G. e. J. B.-T. Alexis Huck. Minimum Dispersion Constrained Nonnegative Matrix Factorization to Unmix Hyperspectral Data.
[4] E. L. Allwein, R. E. Schapire, and Y. Singer. Reducing multiclass to binary: A unifying
approach for margin classifiers. In
[5] K. Alsabti, S. Ranka, and V. Singh. An efficient k-means clustering algorithm. In
[6] L. Alvarez and J.-M. Morel.
[7] M. H. Austern.
[8] E. Baret and G. Guyot. Potentials and limits of vegetation indices for LAI and APAR
assessment.
[9] E. Baret, G. Guyot, and D. J. Major. TSAVI: A vegetation index which minimizes
soil brightness effects on LAI and APAR estimation. In
[10] H. Bay, T. Tuytelaars, and L. V. Gool. SURF: Speeded Up Robust Features.
[11] Y. Bazi, L. Bruzzone, and F. Melgani. An unsupervised approach based on the
generalized Gaussian model to automatic change detection in multitemporal SAR images.
[12] J. Besag. On the statistical analysis of dirty pictures.
[13] J. Bioucas-Dias. A variable splitting augmented lagrangian approach to linear spectral
unmixing. In
[14] G. Bradski. The OpenCV Library.
[15] L. Bruzzone and F. Melgani. Support vector machines for classification of hyperspectral
remote-sensing images. In
[16] L. Bruzzone and D. F. Prieto. An adaptive semiparametric and context-based approach to
unsupervised change detection in multitemporal remote-sensing images.
[17] C. Burges. A Tutorial on Support Vector Machines for Pattern Recognition.
[18] R. H. Byrd, P. Lu, and J. Nocedal. A limited memory algorithm for bound constrained
optimization.
[19] R. H. B. C. Zhu and J. Nocedal. L-bfgs-b: Algorithm 778: L-bfgs-b, fortran routines for
large scale bound constrained optimization.
[20] B. cai Gao. NDWI - a normalized difference water index for remote sensing of vegetation
liquid water from space.
[21] K. Castleman.
[22] G. Celeux and J. Diebolt. The SEM algorithm: a probabilistic teacher algorithm derived
from the EM algorithm for the mixture problem.
[23] T.-H. Chan, C.-Y. Chi, Y.-M. Huang, and W.-K. Ma. A convex analysis-based
minimum-volume enclosing simplex algorithm for hyperspectral unmixing.
[24] E. Christophe and J. Inglada. Robust road extraction for high resolution satellite images.
In
[25] A. Chung, W. Wells, A. Norbash, and W. Grimson. Multi-modal image registration
by minimising kullback-leibler distance. In
[26] J. Clevers. The derivation of a simplified reflectance model for the estimation of leaf area
index.
[27] J. Clevers. Application of the wdvi in estimating lai at the generative stage of barley.
[28] A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Suetens, and G. Marchal.
Automated multimodality image registration based on information theory. In
[29] D. Commaniciu. Mean shift: A robust approach toward feature space analysis.
[30] P. R. Coppin, I. Jonckheere, and K. Nachaerts. Digital change detection in ecosystem
monitoring: a review.
[31] R. E. Crippen. Calculating the vegetation index faster.
[32] P. E. Danielsson. Euclidean distance mapping.
[33] M. H. Davis, A. Khotanzad, D. P. Flamig, and S. E. Harms. A physics-based coordinate
transformation for 3-d image matching.
[34] P. Deer.
[35] D. W. Deering, J. W. Rouse, R. H. Haas, and H. H. Schell. Measuring orage
productionöf grazing units from Landsat-MSS data. In
[36] R. Deriche. Fast algorithms for low level vision.
[37] R. Deriche. Recursively implementing the gaussian and its derivatives. Technical Report 1893, Unite de recherche INRIA Sophia-Antipolis, avril 1993. Research Repport.
[38] S. Derrode, G. Mercier, and W. Pieczynski. Unsupervised change detection in SAR
images using a multicomponent hidden Markov chain model. In
[39] A. Desolneux, L. Moisan, and J.-M. Morel. Meaningful alignments.
[40] C. Dodson and T. Poston.
[41] J. R. Dominique Fasbender and P. Bogaert. Bayesian data fusion for adaptable image
pansharpening.
[42] S. Dudani, K. Breeding, and R. McGhee. Aircraft identification by moments invariants.
[43] V. N. Dvorchenko. Bounds on (deterministic) correlation functions with applications to
registration.
[44] D. Eberly.
[45] P. et al. Caracteristiques spectrales des surfaces sableuses de la region cotiere nord-ouest
de l’Egypte: application aux donnees satellitaires Spot. In
[46] J. Flusser. On the independence of rotation moment invariants.
[47] I. Fodor. A survey of dimension reduction techniques. Technical report, 2002.
[48] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
[49] G. Gerig, O. Kübler, R. Kikinis, and F. A. Jolesz. Nonlinear anisotropic filtering of
MRI data.
[50] R. Gonzalez and R. Woods.
[51] H. Gray.
[52] A. Green, M. Berman, P. Switzer, and M. Craig. A transformation for ordering
multispectral data in terms of image quality with implications for noise removal.
[53] S. Grossberg. Neural dynamics of brightness perception: Features, boundaries, diffusion,
and resonance.
[54] J. Hajnal, D. J. Hawkes, and D. Hill.
[55] W. R. Hamilton.
[56] R. M. Haralick, K. Shanmugam, and I. Dinstein. Textural features for image
classification.
[57] D. Heinz and Chein-I-Chang. Fully constrained least squares linear spectral mixture
analysis method for material quantification in hyperspectral imagery.
[58] M. Holden, D. L. G. Hill, E. R. E. Denton, J. M. Jarosz, T. C. S. Cox, and D. J.
Hawkes. Voxel similarity measures for 3d serial mr brain image registration. In A. Kuba,
M. Samal, and A. Todd-Pkropek, editors,
[59] C. Hsu and C. Lin. A comparison of methods for multi-class support vector machines, 2001.
[60] M. K. Hu. Visual Pattern Recognition by moment invariants.
[61] X. Huang, L. Zhang, and P. Li. Classification and extraction of spatial features in urban
areas using high-resolution multispectral imagery.
[62] A. Huck.
[63] A. Huck and M. Guillaume. Robust hyperspectral data unmixing with spatial and
spectral regularized nmf. In
[64] A. R. Huete. A soil-adjusted vegetation index (SAVI).
[65] A. R. Huete, C. Justice, and H. Liu. Development of vegetation and soil indices for
MODIS-EOS.
[66] A. Hyvarinen. Fast and robust fixed-point algorithms for independent component
analysis.
[67] C. Igel, V. Heidrich-Meisner, and T. Glasmachers. Shark.
[68] J. Inglada. Similarity Measures for Multisensor Remote Sensing Images. In
[69] J. Inglada. Change detection on SAR images by using a parametric estimation of the
Kullback-Leibler divergence. In
[70] J. Inglada and A. Giros. On the possibility of automatic multi-sensor image registration.
[71] J. Inglada and G. Mercier. A New Statistical Similarity Measure for Change Detection
in Multitemporal SAR Images and its Extension to Multiscale Change Analysis.
[72] S. Jacquemoud, W. Verhoef, F. Baret, C. Bacour, P. J. Zarco-Tejada, G. P. Asner,
C. FranÃ
[73] J.Flusser and T. Suk. A moment based approach to registration of image with affine
geometric distortion.
[74] T. Joachims. Text Categorization with Support Vector Machines: Learning with Many Relevant Features. Technical report, Computer Science of The University of dortmund, Nov. 1997.
[75] C. J. Joly.
[76] C. O. Justice, E. Vermote, J. R. G. Townshend, R. Defries, D. P. Roy, D. K. Hall,
V. V. Salomonson, J. L. Privette, G. Riggs, A. Strahler, W. Lucht, R. B. Myneni,
Y. Knyazikhin, S. W. Running, R. R. Nemani, Z. Wan, A. R. Huete, W. van Leeuwen,
R. E. Wolfe, L. Giglio, J.-P. Muller, P. Lewis, , and M. J. Barnsley. The moderate resolution
imaging spectroradiometer (MODIS): Land remote sensing for global change research.
[77] C. Jutten and J. Herault. Blind separation of sources, part i: An adaptive algorithm based
on neuromimetic architecture.
[78] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. Piatko, R. Silverman, and A. Y. Wu. An efficient k-means clustering algorithm: Analysis and implementation.
[79] Y. J. Kaufman and D. Tanré. Atmospherically Resistant Vegetation Index (ARVI) for
EOS-MODIS.
[80] J. Koënderink and A. van Doorn. The Structure of Two-Dimensional Scalar Fields with
Applications to Vision.
[81] J. Koenderink and A. van Doorn. Local features of smooth shapes: Ridges and courses.
[82] C. Kuglin and D. Hines. The phase correlation image alignment method. In
[83] J. Lacauxa, Y. T. andC. Vignollesa, J. Ndioneb, and M. Lafayec. Classification of
ponds from high-spatial resolution remote sensing: Application to Rift Valley fever epidemics
in Senegal.
[84] V. Lacroix and M. Acheroy. Feature extraction using the constrained gradient.
[85] J. Lee. Digital image enhancement and noise filtering by use of local statistics.
[86] J. Lee, A. Woodyatt, and M. Berman. Enhancement of high spectral resolution
remote-sensing data by a noise-adjusted principal components transform.
[87] J. Li and J. Bioucas-Dias. Minimum volume simplex analysis: A fast algorithm to unmix
hyperspectral data. In
[88] T. Lindeberg.
[89] H. Lodish, A. Berk, S. Zipursky, P. Matsudaira, D. Baltimore, and J. Darnell.
[90] D. Lu, P. Mausel, E. Brondizio, and E. Moran. Change detection techniques.
[91] F. Maes, A. Collignon, D. Meulen, G. Marchal, and P. Suetens. Multi-modality image
registration by maximization of mutual information.
[92] D. Malacara.
[93] D. Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellen, and W. Eubank. Non-rigid
multimodality image registration. In
[94] D. Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellen, and W. Eubank. PET-CT image
registration in the chest using free-form deformations.
[95] S. K. McFeeters. The use of the normalized difference water index (NDWI) in
the delineation of open water features.
[96] J. Nascimento and J. Dias. Vertex component analysis: a fast algorithm to unmix
hyperspectral data.
[97] Y. Z. J. G. S. Ni. Use of normalized difference built-up index in automatically mapping
urban areas from TM imagery.
[98] E. Nicoloyanni. Un indice de changement diachronique appliqué deux sècnes Landsat
MSS sur Athènes (grèce).
[99] A. Nielsen. The regularized iteratively reweighted mad method for change detection
in multi-and hyperspectral data.
[100] A. Nielsen. Kernel maximum autocorrelation factor and minimum noise fraction
transformations.
[101] V. Onana, E. Trouvé, G. Mauris, J. Rudant, and P. Frison. Change detection in urban
context with multitemporal ERS-SAR images by using data fusion approach. In
[102] E. Osuna, R. Freund, and F. Girosi. Training support vector machines:an application to face detection, 1997.
[103] R. L. Pearson and L. D. Miller. Remote mapping of standing crop biomass for estimation
of the productivity of the shortgrass prairie, pawnee national grasslands, colorado. In
[104] D. Pelleg and A. Moore. Accelerating exact k -means algorithms with geometric
reasoning. In
[105] G. P. Penney, J. Weese, J. A. Little, P. Desmedt, D. L. G. Hill, and D. J. Hawkes.
A comparision of similarity measures for use in 2d-3d medical image registration.
[106] P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion.
[107] M. Pesaresi, A. Gerhardinger, and F. Kayitakire. A robust built-up area presence index
by anisotropic rotation-invariant textural measure.
[108] B. Pinty and M. M. Verstraete. GEMI: a non-linear index to monitor global vegetation
from satellites.
[109] J. P. Pluim, J. B. A. Maintz, and M. A. Viergever. Mutual-Information-Based
Registration of Medical Images: A Survey.
[110] S. Plummer, P. North, and S. Briggs. The Angular Vegetation Index (AVI): an
atmospherically resistant index for the Second Along-Track Scanning Radiometer (ATSR-2).
In
[111] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling.
[112] J. Qi, A. . Chehbouni, A. Huete, Y. Kerr, and S. Sorooshian. A modified soil adjusted
vegetation index.
[113] R. J. Radke, S. Andra, O. Al-Kofahi, and B. Roysman. Image change detection
algorithms: a systematic survey.
[114] I. Reed and X. Yu. Adaptive multiple-band cfar detection of an optical pattern with
unknown spectral distribution.
[115] J. A. Richards. Analysis of remotely sensed data: the formative decades and the fututre.
[116] A. J. Richardson and C. L. Wiegand. Distinguishing vegetation from soil background
information.
[117] K. Rohr, M. Fornefett, and H. S. Stiehl. Approximating thin-plate splines for elastric
registration: Integration of landmark errors and orientation attributes. In A. Kuba, M. Samal,
and A. Todd-Pkropek, editors,
[118] K. Rohr, H. S. Stiehl, R. Sprengel, T. M. Buzug, J. Weese, and M. H. Kuhn.
Landmark-based elastic registration using approximating thin-plate splines.
[119] J. W. Rouse. Monitoring the vernal advancement and retrogradation of natural vegetation. Type ii report, NASA/GSFCT, Greenbelt, MD, USA, 1973.
[120] D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O. Leach, and D. J. Hawkes.
Nonrigid registration using free-form deformations: Application to breast mr images.
[121] G. Sapiro and D. Ringach. Anisotropic diffusion of multivalued images with
applications to color filtering.
[122] S. Schweizer and J. Moura. Efficient detection in hyperspectral imagery.
[123] J. P. Serra.
[124] J. Sethian.
[125] J. C. Spall. An overview of the simultaneous perturbation method for efficient
optimization.
[126] E. Stabel and P. Fischer. Detection of structural changes in river dynamics by
radar-based earth observation methods. In
[127] M. Styner, C. Brehbuhler, G. Szekely, and G. Gerig. Parametric estimate of intensity
homogeneities applied to MRI.
[128] B. M. ter Haar Romeny, editor.
[129] R. Touzi, A. Lopes, and P. Bousquet. A statistical and geometrical edge detector for
SAR images.
[130] J. Townshend, C. Justice, C. Gurney, and J. McManus. The impact of misregistration
on change detection.
[131] F. Tupin, H. Maître, J.-F. Mangin, J.-M. Nicolas, and E. Pechersky. Detection of linear
features in SAR images: application to road network extraction.
[132] V. Vapnik.
[133] E. F. Vermote, D. Tanre, J. L. Deuze, M. Herman, and J. J. Morcette. Second
Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview.
[134] P. Viola and W. M. Wells III. Alignment by maximization of mutual information.
[135] J. Weickert, B. ter
Haar Romeny, and M. Viergever. Conservative image transformations with restoration and
scale-space properties. In
[136] J. Weston and C. Watkins. Multi-class support vector machines, 1998.
[137] R. T. Whitaker. Characterizing first and second order patches using geometry-limited
diffusion. In
[138] R. T. Whitaker.
[139] R. T. Whitaker. Geometry-limited diffusion in the characterization of geometric patches
in images.
[140] R. T. Whitaker and G. Gerig.
[141] R. T. Whitaker and S. M. Pizer. Geometry-based image segmentation using anisotropic
diffusion. In Y.-L. O, A. Toet, H. Heijmans, D. Foster, and P. Meer, editors,
[142] R. T. Whitaker and S. M. Pizer. A multi-scale approach to nonuniform diffusion.
[143] R. T. Whitaker and X. Xue. Variable-Conductance, Level-Set Curvature for Image
Processing. In
[144] C. L. Wiegand, A. J. Richardson, D. E. Escobar, and A. H. Gerbermann. Vegetation
indices in crop assessments.
[145] G. Wyszecki.
[146] H. Xu. Modification of normalised difference water index (NDWI) to enhance open
water features in remotely sensed imagery.
[147] T. Yoo, U. Neumann, H. Fuchs, S. Pizer, T. Cullip, J. Rhoades, and R. Whitaker.
Direct visualization of volume data.
[148] T. Yoo, S. Pizer, H. Fuchs, T. Cullip, J. Rhoades, and R. Whitaker. Achieving direct
volume visualization with interactive semantic region selection. In
[149] T. S. Yoo and J. M. Coggins. Using statistical pattern recognition techniques to
control variable conductance diffusion. In
[150] P. J. Zarco-Tejada and S. Ustin. Modeling canopy water content for carbon estimates
from MODIS data at land EOS validation sites. In