StereoReconstructionExample.cxxΒΆ
Example usage:
./StereoReconstructionExample Input/sensor_stereo_left.tif Input/sensor_stereo_right.tif Output/elevationOutput.tif Output/elevationOutputPrintable.png 140
Example source code (StereoReconstructionExample.cxx):
// This example demonstrates the use of the stereo reconstruction chain
// from an image pair. The images are assumed to come from the same sensor
// but with different positions. The approach presented here has the
// following steps:
// \begin{itemize}
// \item Epipolar resampling of the image pair
// \item Dense disparity map estimation
// \item Projection of the disparities on an existing Digital Elevation Model (DEM)
// \end{itemize}
// It is important to note that this method requires the sensor models with
// a pose estimate for each image.
#include "otbStereorectificationDisplacementFieldSource.h"
#include "otbStreamingWarpImageFilter.h"
#include "otbBandMathImageFilter.h"
#include "otbSubPixelDisparityImageFilter.h"
#include "otbDisparityMapMedianFilter.h"
#include "otbDisparityMapToDEMFilter.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "otbBCOInterpolateImageFunction.h"
#include "itkUnaryFunctorImageFilter.h"
#include "otbCastImageFilter.h"
#include "otbImageList.h"
#include "otbImageListToVectorImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "otbDEMHandler.h"
int main(int argc, char* argv[])
{
if (argc != 6)
{
std::cerr << "Usage: " << argv[0];
std::cerr << " sensorImage1 sensorImage2 outputDEM outputDEMPNG";
std::cerr << "averageElevation " << std::endl;
return EXIT_FAILURE;
}
using FloatImageType = otb::Image<float, 2>;
using FloatVectorImageType = otb::VectorImage<float, 2>;
using ImageReaderType = otb::ImageFileReader<FloatImageType>;
using WriterType = otb::ImageFileWriter<FloatImageType>;
using OutputPixelType = unsigned char;
using OutputImageType = otb::Image<OutputPixelType, 2>;
using RescalerType = itk::RescaleIntensityImageFilter<FloatImageType, OutputImageType>;
using OutputWriterType = otb::ImageFileWriter<OutputImageType>;
// This example demonstrates the use of the following filters :
// \begin{itemize}
// \item \doxygen{otb}{StereorectificationDisplacementFieldSource}
// \item \doxygen{otb}{StreamingWarpImageFilter}
// \item \doxygen{otb}{PixelWiseBlockMatchingImageFilter}
// \item \doxygen{otb}{otbSubPixelDisparityImageFilter}
// \item \doxygen{otb}{otbDisparityMapMedianFilter}
// \item \doxygen{otb}{DisparityMapToDEMFilter}
// \end{itemize}
using DisplacementFieldSourceType = otb::StereorectificationDisplacementFieldSource<FloatImageType, FloatVectorImageType>;
using DisplacementType = itk::Vector<double, 2>;
using DisplacementFieldType = otb::Image<DisplacementType>;
using DisplacementFieldCastFilterType = otb::CastImageFilter<FloatVectorImageType, DisplacementFieldType>;
using WarpFilterType = otb::StreamingWarpImageFilter<FloatImageType, FloatImageType, DisplacementFieldType>;
using BCOInterpolationType = otb::BCOInterpolateImageFunction<FloatImageType>;
using NCCBlockMatchingFunctorType = otb::Functor::NCCBlockMatching<FloatImageType, FloatImageType>;
using NCCBlockMatchingFilterType =
otb::PixelWiseBlockMatchingImageFilter<FloatImageType, FloatImageType, FloatImageType, FloatImageType, NCCBlockMatchingFunctorType>;
using BandMathFilterType = otb::BandMathImageFilter<FloatImageType>;
using NCCSubPixelDisparityFilterType =
otb::SubPixelDisparityImageFilter<FloatImageType, FloatImageType, FloatImageType, FloatImageType, NCCBlockMatchingFunctorType>;
using MedianFilterType = otb::DisparityMapMedianFilter<FloatImageType, FloatImageType, FloatImageType>;
using DisparityToElevationFilterType = otb::DisparityMapToDEMFilter<FloatImageType, FloatImageType, FloatImageType, FloatVectorImageType, FloatImageType>;
double avgElevation = atof(argv[5]);
otb::DEMHandler::GetInstance().SetDefaultHeightAboveEllipsoid(avgElevation);
ImageReaderType::Pointer leftReader = ImageReaderType::New();
ImageReaderType::Pointer rightReader = ImageReaderType::New();
leftReader->SetFileName(argv[1]);
rightReader->SetFileName(argv[2]);
// The image pair is supposed to be in sensor geometry. From two images covering
// nearly the same area, one can estimate a common epipolar geometry. In this geometry,
// an altitude variation corresponds to an horizontal shift between the two images.
// The filter \doxygen{otb}{StereorectificationDisplacementFieldSource} computes the
// deformation grids for each image.
//
// These grids are sampled in epipolar geometry. They have two bands, containing
// the position offset (in physical space units) between the current epipolar
// point and the corresponding sensor point in horizontal and vertical
// direction. They can be computed at a lower resolution than sensor
// resolution. The application \code{StereoRectificationGridGenerator} also
// provides a simple tool to generate the epipolar grids for your image pair.
DisplacementFieldSourceType::Pointer m_DisplacementFieldSource = DisplacementFieldSourceType::New();
m_DisplacementFieldSource->SetLeftImage(leftReader->GetOutput());
m_DisplacementFieldSource->SetRightImage(rightReader->GetOutput());
m_DisplacementFieldSource->SetGridStep(4);
m_DisplacementFieldSource->SetScale(1.0);
// m_DisplacementFieldSource->SetAverageElevation(avgElevation);
m_DisplacementFieldSource->Update();
// Then, the sensor images can be resampled in epipolar geometry, using the
// \doxygen{otb}{StreamingWarpImageFilter}. The application
// \code{GridBasedImageResampling} also gives an easy access to this filter. The user
// can choose the epipolar region to resample, as well as the resampling step
// and the interpolator.
//
// Note that the epipolar image size can be retrieved from the stereo rectification grid
// filter.
FloatImageType::SpacingType epipolarSpacing;
epipolarSpacing[0] = 1.0;
epipolarSpacing[1] = 1.0;
FloatImageType::SizeType epipolarSize;
epipolarSize = m_DisplacementFieldSource->GetRectifiedImageSize();
FloatImageType::PointType epipolarOrigin;
epipolarOrigin[0] = 0.0;
epipolarOrigin[1] = 0.0;
FloatImageType::PixelType defaultValue = 0;
// The deformation grids are casted into deformation fields, then the left
// and right sensor images are resampled.
DisplacementFieldCastFilterType::Pointer m_LeftDisplacementFieldCaster = DisplacementFieldCastFilterType::New();
m_LeftDisplacementFieldCaster->SetInput(m_DisplacementFieldSource->GetLeftDisplacementFieldOutput());
m_LeftDisplacementFieldCaster->GetOutput()->UpdateOutputInformation();
BCOInterpolationType::Pointer leftInterpolator = BCOInterpolationType::New();
leftInterpolator->SetRadius(2);
WarpFilterType::Pointer m_LeftWarpImageFilter = WarpFilterType::New();
m_LeftWarpImageFilter->SetInput(leftReader->GetOutput());
m_LeftWarpImageFilter->SetDisplacementField(m_LeftDisplacementFieldCaster->GetOutput());
m_LeftWarpImageFilter->SetInterpolator(leftInterpolator);
m_LeftWarpImageFilter->SetOutputSize(epipolarSize);
m_LeftWarpImageFilter->SetOutputSpacing(epipolarSpacing);
m_LeftWarpImageFilter->SetOutputOrigin(epipolarOrigin);
m_LeftWarpImageFilter->SetEdgePaddingValue(defaultValue);
DisplacementFieldCastFilterType::Pointer m_RightDisplacementFieldCaster = DisplacementFieldCastFilterType::New();
m_RightDisplacementFieldCaster->SetInput(m_DisplacementFieldSource->GetRightDisplacementFieldOutput());
m_RightDisplacementFieldCaster->GetOutput()->UpdateOutputInformation();
BCOInterpolationType::Pointer rightInterpolator = BCOInterpolationType::New();
rightInterpolator->SetRadius(2);
WarpFilterType::Pointer m_RightWarpImageFilter = WarpFilterType::New();
m_RightWarpImageFilter->SetInput(rightReader->GetOutput());
m_RightWarpImageFilter->SetDisplacementField(m_RightDisplacementFieldCaster->GetOutput());
m_RightWarpImageFilter->SetInterpolator(rightInterpolator);
m_RightWarpImageFilter->SetOutputSize(epipolarSize);
m_RightWarpImageFilter->SetOutputSpacing(epipolarSpacing);
m_RightWarpImageFilter->SetOutputOrigin(epipolarOrigin);
m_RightWarpImageFilter->SetEdgePaddingValue(defaultValue);
// Since the resampling produces black regions around the image, it is useless
// to estimate disparities on these \textit{no-data} regions. We use a \doxygen{otb}{BandMathImageFilter}
// to produce a mask on left and right epipolar images.
BandMathFilterType::Pointer m_LBandMathFilter = BandMathFilterType::New();
m_LBandMathFilter->SetNthInput(0, m_LeftWarpImageFilter->GetOutput(), "inleft");
#ifdef OTB_MUPARSER_HAS_CXX_LOGICAL_OPERATORS
std::string leftExpr = "inleft != 0 ? 255 : 0";
#else
std::string leftExpr = "if(inleft != 0,255,0)";
#endif
m_LBandMathFilter->SetExpression(leftExpr);
BandMathFilterType::Pointer m_RBandMathFilter = BandMathFilterType::New();
m_RBandMathFilter->SetNthInput(0, m_RightWarpImageFilter->GetOutput(), "inright");
#ifdef OTB_MUPARSER_HAS_CXX_LOGICAL_OPERATORS
std::string rightExpr = "inright != 0 ? 255 : 0";
#else
std::string rightExpr = "if(inright != 0,255,0)";
#endif
m_RBandMathFilter->SetExpression(rightExpr);
// Once the two sensor images have been resampled in epipolar geometry, the
// disparity map can be computed. The approach presented here is a 2D matching
// based on a pixel-wise metric optimization. This approach doesn't give the best
// results compared to global optimization methods, but it is suitable for
// streaming and threading on large images.
//
// The major filter used for this step is \doxygen{otb}{PixelWiseBlockMatchingImageFilter}.
// The metric is computed on a window centered around the tested epipolar position.
// It performs a pixel-to-pixel matching between the two epipolar images. The output disparities
// are given as index offset from left to right position. The following features are available
// in this filter:
// \begin{itemize}
// \item Available metrics : SSD, NCC and $L^{p}$ pseudo norm (computed on a square window)
// \item Rectangular disparity exploration area.
// \item Input masks for left and right images (optional).
// \item Output metric values (optional).
// \item Possibility to use input disparity estimate (as a uniform value or a full map) and an
// exploration radius around these values to reduce the size of the exploration area (optional).
// \end{itemize}
NCCBlockMatchingFilterType::Pointer m_NCCBlockMatcher = NCCBlockMatchingFilterType::New();
m_NCCBlockMatcher->SetLeftInput(m_LeftWarpImageFilter->GetOutput());
m_NCCBlockMatcher->SetRightInput(m_RightWarpImageFilter->GetOutput());
m_NCCBlockMatcher->SetRadius(3);
m_NCCBlockMatcher->SetMinimumHorizontalDisparity(-24);
m_NCCBlockMatcher->SetMaximumHorizontalDisparity(0);
m_NCCBlockMatcher->SetMinimumVerticalDisparity(0);
m_NCCBlockMatcher->SetMaximumVerticalDisparity(0);
m_NCCBlockMatcher->MinimizeOff();
m_NCCBlockMatcher->SetLeftMaskInput(m_LBandMathFilter->GetOutput());
m_NCCBlockMatcher->SetRightMaskInput(m_RBandMathFilter->GetOutput());
// Some other filters have been added to enhance these \textit{pixel-to-pixel} disparities. The filter
// \doxygen{otb}{SubPixelDisparityImageFilter} can estimate the disparities with sub-pixel
// precision. Several interpolation methods can be used : parabolic fit, triangular fit, and
// dichotomy search.
NCCSubPixelDisparityFilterType::Pointer m_NCCSubPixFilter = NCCSubPixelDisparityFilterType::New();
m_NCCSubPixFilter->SetInputsFromBlockMatchingFilter(m_NCCBlockMatcher);
m_NCCSubPixFilter->SetRefineMethod(NCCSubPixelDisparityFilterType::DICHOTOMY);
// The filter \doxygen{otb}{DisparityMapMedianFilter} can be used to remove outliers. It has two
// parameters:
// \begin{itemize}
// \item The radius of the local neighborhood to compute the median
// \item An incoherence threshold to reject disparities whose distance from the local median
// is superior to the threshold.
// \end{itemize}
MedianFilterType::Pointer m_HMedianFilter = MedianFilterType::New();
m_HMedianFilter->SetInput(m_NCCSubPixFilter->GetHorizontalDisparityOutput());
m_HMedianFilter->SetRadius(2);
m_HMedianFilter->SetIncoherenceThreshold(2.0);
m_HMedianFilter->SetMaskInput(m_LBandMathFilter->GetOutput());
MedianFilterType::Pointer m_VMedianFilter = MedianFilterType::New();
m_VMedianFilter->SetInput(m_NCCSubPixFilter->GetVerticalDisparityOutput());
m_VMedianFilter->SetRadius(2);
m_VMedianFilter->SetIncoherenceThreshold(2.0);
m_VMedianFilter->SetMaskInput(m_LBandMathFilter->GetOutput());
// The application \code{PixelWiseBlockMatching} contains all these filters and
// provides a single interface to compute your disparity maps.
//
// The disparity map obtained with the previous step usually gives a good idea of
// the altitude profile. However, it is more useful to study altitude with a DEM (Digital
// Elevation Model) representation.
//
// The filter \doxygen{otb}{DisparityMapToDEMFilter} performs this last step. The behavior
// of this filter is to :
// \begin{itemize}
// \item Compute the DEM extent from the left sensor image envelope (spacing is set by the user)
// \item Compute the left and right rays corresponding to each valid disparity
// \item Compute the intersection with the \textit{mid-point} method
// \item If the 3D point falls inside a DEM cell and has a greater elevation than the
// current height, the cell height is updated
// \end{itemize}
// The rule of keeping the highest elevation makes sense for buildings seen from the side
// because the roof edges elevation has to be kept. However this rule is not suited for
// noisy disparities.
//
// The application \code{DisparityMapToElevationMap} also gives an example of use.
DisparityToElevationFilterType::Pointer m_DispToElev = DisparityToElevationFilterType::New();
m_DispToElev->SetHorizontalDisparityMapInput(m_HMedianFilter->GetOutput());
m_DispToElev->SetVerticalDisparityMapInput(m_VMedianFilter->GetOutput());
m_DispToElev->SetLeftInput(leftReader->GetOutput());
m_DispToElev->SetRightInput(rightReader->GetOutput());
m_DispToElev->SetLeftEpipolarGridInput(m_DisplacementFieldSource->GetLeftDisplacementFieldOutput());
m_DispToElev->SetRightEpipolarGridInput(m_DisplacementFieldSource->GetRightDisplacementFieldOutput());
m_DispToElev->SetElevationMin(avgElevation - 10.0);
m_DispToElev->SetElevationMax(avgElevation + 80.0);
m_DispToElev->SetDEMGridStep(2.5);
m_DispToElev->SetDisparityMaskInput(m_LBandMathFilter->GetOutput());
// m_DispToElev->SetAverageElevation(avgElevation);
WriterType::Pointer m_DEMWriter = WriterType::New();
m_DEMWriter->SetInput(m_DispToElev->GetOutput());
m_DEMWriter->SetFileName(argv[3]);
m_DEMWriter->Update();
RescalerType::Pointer fieldRescaler = RescalerType::New();
fieldRescaler->SetInput(m_DispToElev->GetOutput());
fieldRescaler->SetOutputMaximum(255);
fieldRescaler->SetOutputMinimum(0);
OutputWriterType::Pointer fieldWriter = OutputWriterType::New();
fieldWriter->SetInput(fieldRescaler->GetOutput());
fieldWriter->SetFileName(argv[4]);
fieldWriter->Update();
// Figure~\ref{fig:STEREORECONSTRUCTIONOUTPUT} shows the result of applying
// terrain reconstruction based using pixel-wise block matching, sub-pixel
// interpolation and DEM estimation using a pair of Pleiades images over the
// \textit{Stadium} in Toulouse, France.
// \begin{figure}
// \center
// \includegraphics[width=0.4\textwidth]{elevationOutputPrintable.eps}
// \itkcaption[From stereo pair to elevation]{DEM image estimated from the disparity.}
// \label{fig:STEREORECONSTRUCTIONOUTPUT}
// \end{figure}
return EXIT_SUCCESS;
}