VectorDataReprojection¶
Reproject a vector data using support image projection reference, or a user specified map projection
Description¶
Reproject vector data using a support image as projection reference or to a user given map projection. If given an image keywordlist can be added to the reprojected vectordata.
Parameters¶
Input data¶
Input vector data -in.vd filename [dtype]
Mandatory
The input vector data to reproject
Use image keywords list -in.kwl image
Optional input image to fill vector data with image metadata.
Output data¶
Output vector data -out.vd filename [dtype]
Mandatory
The reprojected vector data
Output Projection choice -out.proj [image|user]
Default value: image
Use image projection ref
Vector data will be reprojected in image projection ref.User defined projection
Use image projection ref options¶
Image used to get projection map -out.proj.image.in image
Mandatory
Projection map will be found using image metadata
User defined projection options¶
Map Projection -out.proj.user.map [utm|lambert2|lambert93|wgs|epsg]
Default value: utm
Defines the map projection to be used.
Universal Trans-Mercator (UTM)
A system of transverse mercator projections dividing the surface of Earth between 80S and 84N latitude.Lambert II Etendu
This is a Lambert Conformal Conic projection mainly used in France.Lambert93
This is a Lambert 93 projection mainly used in France.WGS 84
This is a Geographical projectionEPSG Code
This code is a generic way of identifying map projections, and allows specifying a large amount of them. See www.spatialreference.org to find which EPSG code is associated to your projection;
Universal Trans-Mercator (UTM) options¶
Zone number -out.proj.user.map.utm.zone int
Default value: 31
The zone number ranges from 1 to 60 and allows defining the transverse mercator projection (along with the hemisphere)
Northern Hemisphere -out.proj.user.map.utm.northhem bool
Default value: false
The transverse mercator projections are defined by their zone number as well as the hemisphere. Activate this parameter if your image is in the northern hemisphere.
EPSG Code options¶
EPSG Code -out.proj.user.map.epsg.code int
Default value: 4326
See www.spatialreference.org to find which EPSG code is associated to your projection
Elevation management¶
This group of parameters allows managing elevation values.
DEM directory -elev.dem directory
This parameter allows selecting a directory containing Digital Elevation Model files. Note that this directory should contain only DEM files. Unexpected behaviour might occurs if other images are found in this directory. Input DEM tiles should be in a raster format supported by GDAL.
Geoid File -elev.geoid filename [dtype]
Use a geoid grid to get the height above the ellipsoid in case there is no DEM available, no coverage for some points or pixels with no_data in the DEM tiles. A version of the geoid can be found on the OTB website (egm96.grd and egm96.grd.hdr at https://gitlab.orfeo-toolbox.org/orfeotoolbox/otb/-/tree/master/Data/Input/DEM).
Default elevation -elev.default float
Default value: 0
This parameter allows setting the default height above ellipsoid when there is no DEM available, no coverage for some points or pixels with no_data in the DEM tiles, and no geoid file has been set. This is also used by some application as an average elevation value.
Examples¶
From the command-line:
otbcli_VectorDataReprojection -in.vd VectorData_QB1.shp -out.proj image -out.proj.image.in ROI_QB_MUL_1.tif -out.vd reprojected_vd.shp
From Python:
import otbApplication
app = otbApplication.Registry.CreateApplication("VectorDataReprojection")
app.SetParameterString("in.vd", "VectorData_QB1.shp")
app.SetParameterString("out.proj","image")
app.SetParameterString("out.proj.image.in", "ROI_QB_MUL_1.tif")
app.SetParameterString("out.vd", "reprojected_vd.shp")
app.ExecuteAndWriteOutput()