OTB
9.0.0
Orfeo Toolbox
|
#include <otbSharkRandomForestsMachineLearningModel.h>
Public Types | |
typedef Superclass::ConfidenceListSampleType | ConfidenceListSampleType |
typedef Superclass::ConfidenceSampleType | ConfidenceSampleType |
typedef Superclass::ConfidenceValueType | ConfidenceValueType |
typedef itk::SmartPointer< const Self > | ConstPointer |
typedef Superclass::InputListSampleType | InputListSampleType |
typedef Superclass::InputSampleType | InputSampleType |
typedef Superclass::InputValueType | InputValueType |
typedef itk::SmartPointer< Self > | Pointer |
typedef Superclass::ProbaListSampleType | ProbaListSampleType |
typedef Superclass::ProbaSampleType | ProbaSampleType |
typedef SharkRandomForestsMachineLearningModel | Self |
typedef MachineLearningModel< TInputValue, TTargetValue > | Superclass |
typedef Superclass::TargetListSampleType | TargetListSampleType |
typedef Superclass::TargetSampleType | TargetSampleType |
typedef Superclass::TargetValueType | TargetValueType |
Public Types inherited from otb::MachineLearningModel< TInputValue, TTargetValue > | |
typedef MachineLearningModel | Self |
typedef itk::Object | Superclass |
typedef itk::SmartPointer< Self > | Pointer |
typedef itk::SmartPointer< const Self > | ConstPointer |
typedef MLMSampleTraits< TInputValue >::ValueType | InputValueType |
typedef MLMSampleTraits< TInputValue >::SampleType | InputSampleType |
typedef itk::Statistics::ListSample< InputSampleType > | InputListSampleType |
typedef MLMTargetTraits< TTargetValue >::ValueType | TargetValueType |
typedef MLMTargetTraits< TTargetValue >::SampleType | TargetSampleType |
typedef itk::Statistics::ListSample< TargetSampleType > | TargetListSampleType |
typedef MLMTargetTraits< double >::ValueType | ConfidenceValueType |
typedef MLMTargetTraits< double >::SampleType | ConfidenceSampleType |
typedef itk::Statistics::ListSample< ConfidenceSampleType > | ConfidenceListSampleType |
typedef itk::VariableLengthVector< double > | ProbaSampleType |
typedef itk::Statistics::ListSample< ProbaSampleType > | ProbaListSampleType |
static Pointer | New () |
virtual ::itk::LightObject::Pointer | CreateAnother (void) const |
virtual const char * | GetNameOfClass () const |
virtual void | Train () override |
virtual void | Save (const std::string &filename, const std::string &name="") override |
virtual void | Load (const std::string &filename, const std::string &name="") override |
Classification model file compatibility tests | |
shark::RFClassifier< unsigned int > | m_RFModel |
shark::RFTrainer< unsigned int > | m_RFTrainer |
std::vector< unsigned int > | m_ClassDictionary |
bool | m_NormalizeClassLabels |
unsigned int | m_NumberOfTrees |
unsigned int | m_MTry |
unsigned int | m_NodeSize |
float | m_OobRatio |
bool | m_ComputeMargin |
virtual bool | CanReadFile (const std::string &) override |
virtual bool | CanWriteFile (const std::string &) override |
virtual unsigned int | GetNumberOfTrees () |
virtual void | SetNumberOfTrees (unsigned int _arg) |
virtual unsigned int | GetMTry () |
virtual void | SetMTry (unsigned int _arg) |
virtual unsigned int | GetNodeSize () |
virtual void | SetNodeSize (unsigned int _arg) |
virtual float | GetOobRatio () |
virtual void | SetOobRatio (float _arg) |
virtual bool | GetComputeMargin () |
virtual void | SetComputeMargin (bool _arg) |
virtual bool | GetNormalizeClassLabels () |
virtual void | SetNormalizeClassLabels (bool _arg) |
SharkRandomForestsMachineLearningModel () | |
~SharkRandomForestsMachineLearningModel () override=default | |
TargetSampleType | DoPredict (const InputSampleType &input, ConfidenceValueType *quality=nullptr, ProbaSampleType *proba=nullptr) const override |
void | DoPredictBatch (const InputListSampleType *, const unsigned int &startIndex, const unsigned int &size, TargetListSampleType *, ConfidenceListSampleType *=nullptr, ProbaListSampleType *=nullptr) const override |
void | PrintSelf (std::ostream &os, itk::Indent indent) const override |
SharkRandomForestsMachineLearningModel (const Self &)=delete | |
void | operator= (const Self &)=delete |
ConfidenceValueType | ComputeConfidence (shark::RealVector &probas, bool computeMargin) const |
Definition at line 77 of file otbSharkRandomForestsMachineLearningModel.h.
typedef Superclass::ConfidenceListSampleType otb::SharkRandomForestsMachineLearningModel< TInputValue, TTargetValue >::ConfidenceListSampleType |
Definition at line 94 of file otbSharkRandomForestsMachineLearningModel.h.
typedef Superclass::ConfidenceSampleType otb::SharkRandomForestsMachineLearningModel< TInputValue, TTargetValue >::ConfidenceSampleType |
Definition at line 93 of file otbSharkRandomForestsMachineLearningModel.h.
typedef Superclass::ConfidenceValueType otb::SharkRandomForestsMachineLearningModel< TInputValue, TTargetValue >::ConfidenceValueType |
Definition at line 92 of file otbSharkRandomForestsMachineLearningModel.h.
typedef itk::SmartPointer<const Self> otb::SharkRandomForestsMachineLearningModel< TInputValue, TTargetValue >::ConstPointer |
Definition at line 84 of file otbSharkRandomForestsMachineLearningModel.h.
typedef Superclass::InputListSampleType otb::SharkRandomForestsMachineLearningModel< TInputValue, TTargetValue >::InputListSampleType |
Definition at line 88 of file otbSharkRandomForestsMachineLearningModel.h.
typedef Superclass::InputSampleType otb::SharkRandomForestsMachineLearningModel< TInputValue, TTargetValue >::InputSampleType |
Definition at line 87 of file otbSharkRandomForestsMachineLearningModel.h.
typedef Superclass::InputValueType otb::SharkRandomForestsMachineLearningModel< TInputValue, TTargetValue >::InputValueType |
Definition at line 86 of file otbSharkRandomForestsMachineLearningModel.h.
typedef itk::SmartPointer<Self> otb::SharkRandomForestsMachineLearningModel< TInputValue, TTargetValue >::Pointer |
Definition at line 83 of file otbSharkRandomForestsMachineLearningModel.h.
typedef Superclass::ProbaListSampleType otb::SharkRandomForestsMachineLearningModel< TInputValue, TTargetValue >::ProbaListSampleType |
Definition at line 96 of file otbSharkRandomForestsMachineLearningModel.h.
typedef Superclass::ProbaSampleType otb::SharkRandomForestsMachineLearningModel< TInputValue, TTargetValue >::ProbaSampleType |
Definition at line 95 of file otbSharkRandomForestsMachineLearningModel.h.
typedef SharkRandomForestsMachineLearningModel otb::SharkRandomForestsMachineLearningModel< TInputValue, TTargetValue >::Self |
Standard class typedefs.
Definition at line 81 of file otbSharkRandomForestsMachineLearningModel.h.
typedef MachineLearningModel<TInputValue, TTargetValue> otb::SharkRandomForestsMachineLearningModel< TInputValue, TTargetValue >::Superclass |
Definition at line 82 of file otbSharkRandomForestsMachineLearningModel.h.
typedef Superclass::TargetListSampleType otb::SharkRandomForestsMachineLearningModel< TInputValue, TTargetValue >::TargetListSampleType |
Definition at line 91 of file otbSharkRandomForestsMachineLearningModel.h.
typedef Superclass::TargetSampleType otb::SharkRandomForestsMachineLearningModel< TInputValue, TTargetValue >::TargetSampleType |
Definition at line 90 of file otbSharkRandomForestsMachineLearningModel.h.
typedef Superclass::TargetValueType otb::SharkRandomForestsMachineLearningModel< TInputValue, TTargetValue >::TargetValueType |
Definition at line 89 of file otbSharkRandomForestsMachineLearningModel.h.
|
protected |
Constructor
Definition at line 47 of file otbSharkRandomForestsMachineLearningModel.hxx.
|
overrideprotecteddefault |
Destructor
|
privatedelete |
Is the input model file readable and compatible with the corresponding classifier ?
|
overridevirtual |
Is the input model file readable and compatible with the corresponding classifier ?
Implements otb::MachineLearningModel< TInputValue, TTargetValue >.
Definition at line 290 of file otbSharkRandomForestsMachineLearningModel.hxx.
|
overridevirtual |
Is the input model file writable and compatible with the corresponding classifier ?
Implements otb::MachineLearningModel< TInputValue, TTargetValue >.
Definition at line 305 of file otbSharkRandomForestsMachineLearningModel.hxx.
|
private |
Confidence list sample
Definition at line 86 of file otbSharkRandomForestsMachineLearningModel.hxx.
virtual::itk::LightObject::Pointer otb::SharkRandomForestsMachineLearningModel< TInputValue, TTargetValue >::CreateAnother | ( | void | ) | const |
Run-time type information (and related methods).
|
overrideprotected |
Predict values using the model
Definition at line 107 of file otbSharkRandomForestsMachineLearningModel.hxx.
|
overrideprotected |
Is the input model file readable and compatible with the corresponding classifier ?
Definition at line 147 of file otbSharkRandomForestsMachineLearningModel.hxx.
|
virtual |
If true, margin confidence value will be computed
|
virtual |
From Shark doc: Get the number of random attributes to investigate at each node.
|
virtual |
Run-time type information (and related methods).
|
virtual |
From Shark doc: Controls when a node is considered pure. If set to 1, a node is pure when it only consists of a single node.
|
virtual |
If true, class labels will be normalised in [0 ... nbClasses]
|
virtual |
From Shark doc: Get the number of trees to grow.
|
virtual |
From Shark doc: Get the fraction of the original training dataset to use as the out of bag sample. The default value is 0.66.
|
overridevirtual |
Load the model from file
Implements otb::MachineLearningModel< TInputValue, TTargetValue >.
Definition at line 249 of file otbSharkRandomForestsMachineLearningModel.hxx.
|
static |
Run-time type information (and related methods).
|
privatedelete |
Is the input model file readable and compatible with the corresponding classifier ?
|
overrideprotected |
PrintSelf method
Definition at line 311 of file otbSharkRandomForestsMachineLearningModel.hxx.
|
overridevirtual |
Save the model to file
Implements otb::MachineLearningModel< TInputValue, TTargetValue >.
Definition at line 223 of file otbSharkRandomForestsMachineLearningModel.hxx.
|
virtual |
If true, margin confidence value will be computed
|
virtual |
From Shark doc: Set the number of random attributes to investigate at each node.
|
virtual |
From Shark doc: Controls when a node is considered pure. If set to 1, a node is pure when it only consists of a single node.
|
virtual |
Is the input model file readable and compatible with the corresponding classifier ?
|
virtual |
From Shark doc: Set the number of trees to grow.
|
virtual |
From Shark doc: Set the fraction of the original training dataset to use as the out of bag sample. The default value is 0.66.
|
overridevirtual |
Train the machine learning model
Implements otb::MachineLearningModel< TInputValue, TTargetValue >.
Definition at line 59 of file otbSharkRandomForestsMachineLearningModel.hxx.
|
private |
Is the input model file readable and compatible with the corresponding classifier ?
Definition at line 186 of file otbSharkRandomForestsMachineLearningModel.h.
|
private |
Is the input model file readable and compatible with the corresponding classifier ?
Definition at line 193 of file otbSharkRandomForestsMachineLearningModel.h.
|
private |
Is the input model file readable and compatible with the corresponding classifier ?
Definition at line 190 of file otbSharkRandomForestsMachineLearningModel.h.
|
private |
Is the input model file readable and compatible with the corresponding classifier ?
Definition at line 191 of file otbSharkRandomForestsMachineLearningModel.h.
|
private |
Is the input model file readable and compatible with the corresponding classifier ?
Definition at line 187 of file otbSharkRandomForestsMachineLearningModel.h.
|
private |
Is the input model file readable and compatible with the corresponding classifier ?
Definition at line 189 of file otbSharkRandomForestsMachineLearningModel.h.
|
private |
Is the input model file readable and compatible with the corresponding classifier ?
Definition at line 192 of file otbSharkRandomForestsMachineLearningModel.h.
|
private |
Is the input model file readable and compatible with the corresponding classifier ?
Definition at line 184 of file otbSharkRandomForestsMachineLearningModel.h.
|
private |
Is the input model file readable and compatible with the corresponding classifier ?
Definition at line 185 of file otbSharkRandomForestsMachineLearningModel.h.