#include <otbCvRTreesWrapper.h>
|
| CvRTreesWrapper () |
|
void | get_votes (const cv::Mat &sample, const cv::Mat &missing, VotesVectorType &vote_count) const |
|
virtual cv::String | getDefaultName () const override |
|
virtual int | getVarCount () const override |
|
virtual cv::Mat | getVarImportance () const override |
|
virtual bool | isClassifier () const override |
|
virtual bool | isTrained () const override |
|
virtual float | predict (cv::InputArray samples, cv::OutputArray results=cv::noArray(), int flags=0) const override |
|
float | predict_confidence (const cv::Mat &sample, const cv::Mat &missing=cv::Mat()) const |
|
float | predict_margin (const cv::Mat &sample, const cv::Mat &missing=cv::Mat()) const |
|
virtual void | read (const cv::FileNode &fn) override |
|
virtual void | save (const cv::String &filename) const override |
|
virtual bool | train (const cv::Ptr< cv::ml::TrainData > &trainData, int flags=0) override |
|
virtual bool | train (cv::InputArray samples, int layout, cv::InputArray responses) override |
|
virtual void | write (cv::FileStorage &fs) const override |
|
| ~CvRTreesWrapper () override=default |
|
|
cv::Ptr< cv::ml::RTrees > | m_Impl |
|
Wrapper for OpenCV Random Trees.
Definition at line 35 of file otbCvRTreesWrapper.h.
◆ VotesVectorType
◆ CvRTreesWrapper()
otb::CvRTreesWrapper::CvRTreesWrapper |
( |
| ) |
|
◆ ~CvRTreesWrapper()
otb::CvRTreesWrapper::~CvRTreesWrapper |
( |
| ) |
|
|
overridedefault |
◆ create()
◆ get_votes()
void otb::CvRTreesWrapper::get_votes |
( |
const cv::Mat & |
sample, |
|
|
const cv::Mat & |
missing, |
|
|
VotesVectorType & |
vote_count |
|
) |
| const |
Compute the number of votes for each class.
◆ getDefaultName()
virtual cv::String otb::CvRTreesWrapper::getDefaultName |
( |
| ) |
const |
|
overridevirtual |
◆ getVarCount()
virtual int otb::CvRTreesWrapper::getVarCount |
( |
| ) |
const |
|
overridevirtual |
◆ getVarImportance()
virtual cv::Mat otb::CvRTreesWrapper::getVarImportance |
( |
| ) |
const |
|
overridevirtual |
◆ isClassifier()
virtual bool otb::CvRTreesWrapper::isClassifier |
( |
| ) |
const |
|
overridevirtual |
◆ isTrained()
virtual bool otb::CvRTreesWrapper::isTrained |
( |
| ) |
const |
|
overridevirtual |
◆ predict()
virtual float otb::CvRTreesWrapper::predict |
( |
cv::InputArray |
samples, |
|
|
cv::OutputArray |
results = cv::noArray() , |
|
|
int |
flags = 0 |
|
) |
| const |
|
overridevirtual |
◆ predict_confidence()
float otb::CvRTreesWrapper::predict_confidence |
( |
const cv::Mat & |
sample, |
|
|
const cv::Mat & |
missing = cv::Mat() |
|
) |
| const |
Predict the confidence of the classifcation by computing the proportion of trees which voted for the majority class.
◆ predict_margin()
float otb::CvRTreesWrapper::predict_margin |
( |
const cv::Mat & |
sample, |
|
|
const cv::Mat & |
missing = cv::Mat() |
|
) |
| const |
Predict the confidence margin of the classifcation by computing the difference in votes between the first and second most voted classes. This measure is preferred to the proportion of votes of the majority class, since it provides information about the conflict between the most likely classes.
◆ read()
virtual void otb::CvRTreesWrapper::read |
( |
const cv::FileNode & |
fn | ) |
|
|
overridevirtual |
◆ save()
virtual void otb::CvRTreesWrapper::save |
( |
const cv::String & |
filename | ) |
const |
|
overridevirtual |
◆ train() [1/2]
virtual bool otb::CvRTreesWrapper::train |
( |
const cv::Ptr< cv::ml::TrainData > & |
trainData, |
|
|
int |
flags = 0 |
|
) |
| |
|
overridevirtual |
◆ train() [2/2]
virtual bool otb::CvRTreesWrapper::train |
( |
cv::InputArray |
samples, |
|
|
int |
layout, |
|
|
cv::InputArray |
responses |
|
) |
| |
|
overridevirtual |
◆ write()
virtual void otb::CvRTreesWrapper::write |
( |
cv::FileStorage & |
fs | ) |
const |
|
overridevirtual |
◆ m_Impl
cv::Ptr<cv::ml::RTrees> otb::CvRTreesWrapper::m_Impl |
|
private |
The documentation for this class was generated from the following file: