OTB
9.0.0
Orfeo Toolbox
|
#include <otbAutoencoderModel.h>
Public Types | |
typedef Superclass::ConfidenceListSampleType | ConfidenceListSampleType |
typedef Superclass::ConfidenceSampleType | ConfidenceSampleType |
typedef Superclass::ConfidenceValueType | ConfidenceValueType |
typedef itk::SmartPointer< const Self > | ConstPointer |
typedef Superclass::InputListSampleType | InputListSampleType |
typedef Superclass::InputSampleType | InputSampleType |
typedef Superclass::InputValueType | InputValueType |
typedef shark::LinearModel< shark::RealVector, NeuronType > | LayerType |
typedef InputListSampleType::Pointer | ListSamplePointerType |
typedef shark::ConcatenatedModel< shark::RealVector > | ModelType |
typedef shark::LinearModel< shark::RealVector, shark::LinearNeuron > | OutLayerType |
typedef itk::SmartPointer< Self > | Pointer |
typedef Superclass::ProbaListSampleType | ProbaListSampleType |
typedef Superclass::ProbaSampleType | ProbaSampleType |
typedef AutoencoderModel | Self |
typedef MachineLearningModel< itk::VariableLengthVector< TInputValue >, itk::VariableLengthVector< TInputValue > > | Superclass |
typedef Superclass::TargetListSampleType | TargetListSampleType |
typedef Superclass::TargetSampleType | TargetSampleType |
typedef Superclass::TargetValueType | TargetValueType |
Public Types inherited from otb::MachineLearningModel< itk::VariableLengthVector< TInputValue >, itk::VariableLengthVector< TInputValue > > | |
typedef MachineLearningModel | Self |
typedef itk::Object | Superclass |
typedef itk::SmartPointer< Self > | Pointer |
typedef itk::SmartPointer< const Self > | ConstPointer |
typedef MLMSampleTraits< itk::VariableLengthVector< TInputValue > >::ValueType | InputValueType |
typedef MLMSampleTraits< itk::VariableLengthVector< TInputValue > >::SampleType | InputSampleType |
typedef itk::Statistics::ListSample< InputSampleType > | InputListSampleType |
typedef MLMTargetTraits< itk::VariableLengthVector< TInputValue > >::ValueType | TargetValueType |
typedef MLMTargetTraits< itk::VariableLengthVector< TInputValue > >::SampleType | TargetSampleType |
typedef itk::Statistics::ListSample< TargetSampleType > | TargetListSampleType |
typedef MLMTargetTraits< double >::ValueType | ConfidenceValueType |
typedef MLMTargetTraits< double >::SampleType | ConfidenceSampleType |
typedef itk::Statistics::ListSample< ConfidenceSampleType > | ConfidenceListSampleType |
typedef itk::VariableLengthVector< double > | ProbaSampleType |
typedef itk::Statistics::ListSample< ProbaSampleType > | ProbaListSampleType |
Public Member Functions | |
bool | CanReadFile (const std::string &filename) override |
bool | CanWriteFile (const std::string &filename) override |
virtual ::itk::LightObject::Pointer | CreateAnother (void) const |
virtual itk::Array< double > | GetBeta () |
virtual double | GetEpsilon () |
virtual double | GetInitFactor () |
virtual std::string | GetLearningCurveFileName () |
virtual const char * | GetNameOfClass () const |
virtual itk::Array< double > | GetNoise () |
virtual itk::Array< unsigned int > | GetNumberOfHiddenNeurons () |
virtual unsigned int | GetNumberOfIterations () |
virtual unsigned int | GetNumberOfIterationsFineTuning () |
virtual itk::Array< double > | GetRegularization () |
virtual itk::Array< double > | GetRho () |
virtual bool | GetWriteLearningCurve () |
virtual bool | GetWriteWeights () |
void | Load (const std::string &filename, const std::string &name="") override |
void | Save (const std::string &filename, const std::string &name="") override |
virtual void | SetBeta (itk::Array< double > _arg) |
virtual void | SetEpsilon (double _arg) |
virtual void | SetInitFactor (double _arg) |
virtual void | SetLearningCurveFileName (std::string _arg) |
virtual void | SetNoise (itk::Array< double > _arg) |
virtual void | SetNumberOfHiddenNeurons (itk::Array< unsigned int > _arg) |
virtual void | SetNumberOfIterations (unsigned int _arg) |
virtual void | SetNumberOfIterationsFineTuning (unsigned int _arg) |
virtual void | SetRegularization (itk::Array< double > _arg) |
virtual void | SetRho (itk::Array< double > _arg) |
virtual void | SetWriteLearningCurve (bool _arg) |
virtual void | SetWriteWeights (bool _arg) |
void | Train () override |
template<class T > | |
void | TrainNetwork (shark::AbstractStoppingCriterion< T > &criterion, shark::Data< shark::RealVector > &, std::ostream &) |
template<class T > | |
void | TrainOneLayer (shark::AbstractStoppingCriterion< T > &criterion, unsigned int, shark::Data< shark::RealVector > &, std::ostream &) |
template<class T > | |
void | TrainOneSparseLayer (shark::AbstractStoppingCriterion< T > &criterion, unsigned int, shark::Data< shark::RealVector > &, std::ostream &) |
Public Member Functions inherited from otb::MachineLearningModel< itk::VariableLengthVector< TInputValue >, itk::VariableLengthVector< TInputValue > > | |
virtual const char * | GetNameOfClass () const |
TargetSampleType | Predict (const InputSampleType &input, ConfidenceValueType *quality=nullptr, ProbaSampleType *proba=nullptr) const |
virtual void | SetDimension (unsigned int _arg) |
virtual unsigned int | GetDimension () |
TargetListSampleType::Pointer | PredictBatch (const InputListSampleType *input, ConfidenceListSampleType *quality=nullptr, ProbaListSampleType *proba=nullptr) const |
bool | HasConfidenceIndex () const |
bool | HasProbaIndex () const |
virtual void | SetInputListSample (InputListSampleType *_arg) |
itkGetObjectMacro (InputListSample, InputListSampleType) | |
virtual const InputListSampleType * | GetInputListSample () const |
itkGetObjectMacro (TargetListSample, TargetListSampleType) | |
itkGetObjectMacro (ConfidenceListSample, ConfidenceListSampleType) | |
virtual void | SetTargetListSample (TargetListSampleType *_arg) |
virtual bool | GetRegressionMode () |
void | SetRegressionMode (bool flag) |
Static Public Member Functions | |
static Pointer | New () |
Protected Member Functions | |
AutoencoderModel () | |
virtual TargetSampleType | DoPredict (const InputSampleType &input, ConfidenceValueType *quality=nullptr, ProbaSampleType *proba=nullptr) const override |
virtual void | DoPredictBatch (const InputListSampleType *, const unsigned int &startIndex, const unsigned int &size, TargetListSampleType *, ConfidenceListSampleType *quality=nullptr, ProbaListSampleType *proba=nullptr) const override |
~AutoencoderModel () override | |
Protected Member Functions inherited from otb::MachineLearningModel< itk::VariableLengthVector< TInputValue >, itk::VariableLengthVector< TInputValue > > | |
MachineLearningModel () | |
~MachineLearningModel () override=default | |
void | PrintSelf (std::ostream &os, itk::Indent indent) const override |
Private Attributes | |
ModelType | m_Encoder |
std::vector< LayerType > | m_InLayers |
itk::Array< unsigned int > | m_NumberOfHiddenNeurons |
OutLayerType | m_OutLayer |
unsigned int | m_NumberOfIterations |
unsigned int | m_NumberOfIterationsFineTuning |
double | m_Epsilon |
itk::Array< double > | m_Regularization |
itk::Array< double > | m_Noise |
itk::Array< double > | m_Rho |
itk::Array< double > | m_Beta |
double | m_InitFactor |
bool | m_WriteLearningCurve |
std::string | m_LearningCurveFileName |
bool | m_WriteWeights |
Additional Inherited Members | |
Protected Attributes inherited from otb::MachineLearningModel< itk::VariableLengthVector< TInputValue >, itk::VariableLengthVector< TInputValue > > | |
InputListSampleType::Pointer | m_InputListSample |
InputListSampleType::Pointer | m_ValidationListSample |
TargetListSampleType::Pointer | m_TargetListSample |
ConfidenceListSampleType::Pointer | m_ConfidenceListSample |
bool | m_RegressionMode |
bool | m_IsRegressionSupported |
bool | m_ConfidenceIndex |
bool | m_ProbaIndex |
bool | m_IsDoPredictBatchMultiThreaded |
unsigned int | m_Dimension |
Autoencoder model wrapper class
Definition at line 78 of file otbAutoencoderModel.h.
typedef Superclass::ConfidenceListSampleType otb::AutoencoderModel< TInputValue, NeuronType >::ConfidenceListSampleType |
Definition at line 97 of file otbAutoencoderModel.h.
typedef Superclass::ConfidenceSampleType otb::AutoencoderModel< TInputValue, NeuronType >::ConfidenceSampleType |
Definition at line 96 of file otbAutoencoderModel.h.
typedef Superclass::ConfidenceValueType otb::AutoencoderModel< TInputValue, NeuronType >::ConfidenceValueType |
Confidence map related typedefs.
Definition at line 95 of file otbAutoencoderModel.h.
typedef itk::SmartPointer<const Self> otb::AutoencoderModel< TInputValue, NeuronType >::ConstPointer |
Definition at line 84 of file otbAutoencoderModel.h.
typedef Superclass::InputListSampleType otb::AutoencoderModel< TInputValue, NeuronType >::InputListSampleType |
Definition at line 88 of file otbAutoencoderModel.h.
typedef Superclass::InputSampleType otb::AutoencoderModel< TInputValue, NeuronType >::InputSampleType |
Definition at line 87 of file otbAutoencoderModel.h.
typedef Superclass::InputValueType otb::AutoencoderModel< TInputValue, NeuronType >::InputValueType |
Definition at line 86 of file otbAutoencoderModel.h.
typedef shark::LinearModel<shark::RealVector, NeuronType> otb::AutoencoderModel< TInputValue, NeuronType >::LayerType |
Definition at line 103 of file otbAutoencoderModel.h.
typedef InputListSampleType::Pointer otb::AutoencoderModel< TInputValue, NeuronType >::ListSamplePointerType |
Definition at line 89 of file otbAutoencoderModel.h.
typedef shark::ConcatenatedModel<shark::RealVector> otb::AutoencoderModel< TInputValue, NeuronType >::ModelType |
Neural network related typedefs.
Definition at line 102 of file otbAutoencoderModel.h.
typedef shark::LinearModel<shark::RealVector, shark::LinearNeuron> otb::AutoencoderModel< TInputValue, NeuronType >::OutLayerType |
Definition at line 104 of file otbAutoencoderModel.h.
typedef itk::SmartPointer<Self> otb::AutoencoderModel< TInputValue, NeuronType >::Pointer |
Definition at line 83 of file otbAutoencoderModel.h.
typedef Superclass::ProbaListSampleType otb::AutoencoderModel< TInputValue, NeuronType >::ProbaListSampleType |
Definition at line 100 of file otbAutoencoderModel.h.
typedef Superclass::ProbaSampleType otb::AutoencoderModel< TInputValue, NeuronType >::ProbaSampleType |
Definition at line 99 of file otbAutoencoderModel.h.
typedef AutoencoderModel otb::AutoencoderModel< TInputValue, NeuronType >::Self |
Definition at line 81 of file otbAutoencoderModel.h.
typedef MachineLearningModel<itk::VariableLengthVector<TInputValue>, itk::VariableLengthVector<TInputValue> > otb::AutoencoderModel< TInputValue, NeuronType >::Superclass |
Definition at line 82 of file otbAutoencoderModel.h.
typedef Superclass::TargetListSampleType otb::AutoencoderModel< TInputValue, NeuronType >::TargetListSampleType |
Definition at line 92 of file otbAutoencoderModel.h.
typedef Superclass::TargetSampleType otb::AutoencoderModel< TInputValue, NeuronType >::TargetSampleType |
Definition at line 91 of file otbAutoencoderModel.h.
typedef Superclass::TargetValueType otb::AutoencoderModel< TInputValue, NeuronType >::TargetValueType |
Definition at line 90 of file otbAutoencoderModel.h.
|
protected |
Definition at line 61 of file otbAutoencoderModel.hxx.
|
overrideprotected |
Definition at line 68 of file otbAutoencoderModel.hxx.
|
overridevirtual |
Is the input model file readable and compatible with the corresponding classifier ?
Definition at line 281 of file otbAutoencoderModel.hxx.
|
overridevirtual |
Is the input model file writable and compatible with the corresponding classifier ?
Definition at line 295 of file otbAutoencoderModel.hxx.
virtual::itk::LightObject::Pointer otb::AutoencoderModel< TInputValue, NeuronType >::CreateAnother | ( | void | ) | const |
|
overrideprotectedvirtual |
Definition at line 357 of file otbAutoencoderModel.hxx.
|
overrideprotectedvirtual |
Definition at line 383 of file otbAutoencoderModel.hxx.
|
virtual |
|
virtual |
|
virtual |
|
virtual |
|
virtual |
|
virtual |
|
virtual |
|
virtual |
|
virtual |
|
virtual |
|
virtual |
|
virtual |
|
virtual |
|
overridevirtual |
Load the model from file
Definition at line 317 of file otbAutoencoderModel.hxx.
|
static |
|
overridevirtual |
Save the model to file
Definition at line 301 of file otbAutoencoderModel.hxx.
References otbMsgDevMacro.
|
virtual |
|
virtual |
|
virtual |
|
virtual |
|
virtual |
|
virtual |
|
virtual |
|
virtual |
|
virtual |
|
virtual |
|
virtual |
|
virtual |
|
overridevirtual |
Train the machine learning model
Definition at line 73 of file otbAutoencoderModel.hxx.
References otbMsgDevMacro.
void otb::AutoencoderModel< TInputValue, NeuronType >::TrainNetwork | ( | shark::AbstractStoppingCriterion< T > & | criterion, |
shark::Data< shark::RealVector > & | samples, | ||
std::ostream & | File | ||
) |
Definition at line 244 of file otbAutoencoderModel.hxx.
References otbMsgDevMacro.
void otb::AutoencoderModel< TInputValue, NeuronType >::TrainOneLayer | ( | shark::AbstractStoppingCriterion< T > & | criterion, |
unsigned int | layer_index, | ||
shark::Data< shark::RealVector > & | samples, | ||
std::ostream & | File | ||
) |
Definition at line 149 of file otbAutoencoderModel.hxx.
References otbMsgDevMacro.
void otb::AutoencoderModel< TInputValue, NeuronType >::TrainOneSparseLayer | ( | shark::AbstractStoppingCriterion< T > & | criterion, |
unsigned int | layer_index, | ||
shark::Data< shark::RealVector > & | samples, | ||
std::ostream & | File | ||
) |
Definition at line 198 of file otbAutoencoderModel.hxx.
References otbMsgDevMacro.
|
private |
Training parameters
Definition at line 185 of file otbAutoencoderModel.h.
|
private |
Internal Network
Definition at line 173 of file otbAutoencoderModel.h.
|
private |
Training parameters
Definition at line 181 of file otbAutoencoderModel.h.
|
private |
Training parameters
Definition at line 186 of file otbAutoencoderModel.h.
|
private |
Definition at line 174 of file otbAutoencoderModel.h.
|
private |
Training parameters
Definition at line 190 of file otbAutoencoderModel.h.
|
private |
Training parameters
Definition at line 183 of file otbAutoencoderModel.h.
|
private |
Definition at line 176 of file otbAutoencoderModel.h.
|
private |
Training parameters
Definition at line 179 of file otbAutoencoderModel.h.
|
private |
Training parameters
Definition at line 180 of file otbAutoencoderModel.h.
|
private |
Definition at line 175 of file otbAutoencoderModel.h.
|
private |
Training parameters
Definition at line 182 of file otbAutoencoderModel.h.
|
private |
Training parameters
Definition at line 184 of file otbAutoencoderModel.h.
|
private |
Training parameters
Definition at line 189 of file otbAutoencoderModel.h.
|
private |
Training parameters
Definition at line 191 of file otbAutoencoderModel.h.