OTB  9.0.0
Orfeo Toolbox
Public Types | Public Member Functions | Static Public Member Functions | Protected Member Functions | Private Attributes | List of all members
otb::AutoencoderModel< TInputValue, NeuronType > Class Template Reference

#include <otbAutoencoderModel.h>

+ Inheritance diagram for otb::AutoencoderModel< TInputValue, NeuronType >:
+ Collaboration diagram for otb::AutoencoderModel< TInputValue, NeuronType >:

Public Types

typedef Superclass::ConfidenceListSampleType ConfidenceListSampleType
 
typedef Superclass::ConfidenceSampleType ConfidenceSampleType
 
typedef Superclass::ConfidenceValueType ConfidenceValueType
 
typedef itk::SmartPointer< const SelfConstPointer
 
typedef Superclass::InputListSampleType InputListSampleType
 
typedef Superclass::InputSampleType InputSampleType
 
typedef Superclass::InputValueType InputValueType
 
typedef shark::LinearModel< shark::RealVector, NeuronType > LayerType
 
typedef InputListSampleType::Pointer ListSamplePointerType
 
typedef shark::ConcatenatedModel< shark::RealVector > ModelType
 
typedef shark::LinearModel< shark::RealVector, shark::LinearNeuron > OutLayerType
 
typedef itk::SmartPointer< SelfPointer
 
typedef Superclass::ProbaListSampleType ProbaListSampleType
 
typedef Superclass::ProbaSampleType ProbaSampleType
 
typedef AutoencoderModel Self
 
typedef MachineLearningModel< itk::VariableLengthVector< TInputValue >, itk::VariableLengthVector< TInputValue > > Superclass
 
typedef Superclass::TargetListSampleType TargetListSampleType
 
typedef Superclass::TargetSampleType TargetSampleType
 
typedef Superclass::TargetValueType TargetValueType
 
- Public Types inherited from otb::MachineLearningModel< itk::VariableLengthVector< TInputValue >, itk::VariableLengthVector< TInputValue > >
typedef MachineLearningModel Self
 
typedef itk::Object Superclass
 
typedef itk::SmartPointer< SelfPointer
 
typedef itk::SmartPointer< const SelfConstPointer
 
typedef MLMSampleTraits< itk::VariableLengthVector< TInputValue > >::ValueType InputValueType
 
typedef MLMSampleTraits< itk::VariableLengthVector< TInputValue > >::SampleType InputSampleType
 
typedef itk::Statistics::ListSample< InputSampleTypeInputListSampleType
 
typedef MLMTargetTraits< itk::VariableLengthVector< TInputValue > >::ValueType TargetValueType
 
typedef MLMTargetTraits< itk::VariableLengthVector< TInputValue > >::SampleType TargetSampleType
 
typedef itk::Statistics::ListSample< TargetSampleTypeTargetListSampleType
 
typedef MLMTargetTraits< double >::ValueType ConfidenceValueType
 
typedef MLMTargetTraits< double >::SampleType ConfidenceSampleType
 
typedef itk::Statistics::ListSample< ConfidenceSampleTypeConfidenceListSampleType
 
typedef itk::VariableLengthVector< double > ProbaSampleType
 
typedef itk::Statistics::ListSample< ProbaSampleTypeProbaListSampleType
 

Public Member Functions

bool CanReadFile (const std::string &filename) override
 
bool CanWriteFile (const std::string &filename) override
 
virtual ::itk::LightObject::Pointer CreateAnother (void) const
 
virtual itk::Array< double > GetBeta ()
 
virtual double GetEpsilon ()
 
virtual double GetInitFactor ()
 
virtual std::string GetLearningCurveFileName ()
 
virtual const char * GetNameOfClass () const
 
virtual itk::Array< double > GetNoise ()
 
virtual itk::Array< unsigned int > GetNumberOfHiddenNeurons ()
 
virtual unsigned int GetNumberOfIterations ()
 
virtual unsigned int GetNumberOfIterationsFineTuning ()
 
virtual itk::Array< double > GetRegularization ()
 
virtual itk::Array< double > GetRho ()
 
virtual bool GetWriteLearningCurve ()
 
virtual bool GetWriteWeights ()
 
void Load (const std::string &filename, const std::string &name="") override
 
void Save (const std::string &filename, const std::string &name="") override
 
virtual void SetBeta (itk::Array< double > _arg)
 
virtual void SetEpsilon (double _arg)
 
virtual void SetInitFactor (double _arg)
 
virtual void SetLearningCurveFileName (std::string _arg)
 
virtual void SetNoise (itk::Array< double > _arg)
 
virtual void SetNumberOfHiddenNeurons (itk::Array< unsigned int > _arg)
 
virtual void SetNumberOfIterations (unsigned int _arg)
 
virtual void SetNumberOfIterationsFineTuning (unsigned int _arg)
 
virtual void SetRegularization (itk::Array< double > _arg)
 
virtual void SetRho (itk::Array< double > _arg)
 
virtual void SetWriteLearningCurve (bool _arg)
 
virtual void SetWriteWeights (bool _arg)
 
void Train () override
 
template<class T >
void TrainNetwork (shark::AbstractStoppingCriterion< T > &criterion, shark::Data< shark::RealVector > &, std::ostream &)
 
template<class T >
void TrainOneLayer (shark::AbstractStoppingCriterion< T > &criterion, unsigned int, shark::Data< shark::RealVector > &, std::ostream &)
 
template<class T >
void TrainOneSparseLayer (shark::AbstractStoppingCriterion< T > &criterion, unsigned int, shark::Data< shark::RealVector > &, std::ostream &)
 
- Public Member Functions inherited from otb::MachineLearningModel< itk::VariableLengthVector< TInputValue >, itk::VariableLengthVector< TInputValue > >
virtual const char * GetNameOfClass () const
 
TargetSampleType Predict (const InputSampleType &input, ConfidenceValueType *quality=nullptr, ProbaSampleType *proba=nullptr) const
 
virtual void SetDimension (unsigned int _arg)
 
virtual unsigned int GetDimension ()
 
TargetListSampleType::Pointer PredictBatch (const InputListSampleType *input, ConfidenceListSampleType *quality=nullptr, ProbaListSampleType *proba=nullptr) const
 
bool HasConfidenceIndex () const
 
bool HasProbaIndex () const
 
virtual void SetInputListSample (InputListSampleType *_arg)
 
 itkGetObjectMacro (InputListSample, InputListSampleType)
 
virtual const InputListSampleTypeGetInputListSample () const
 
 itkGetObjectMacro (TargetListSample, TargetListSampleType)
 
 itkGetObjectMacro (ConfidenceListSample, ConfidenceListSampleType)
 
virtual void SetTargetListSample (TargetListSampleType *_arg)
 
virtual bool GetRegressionMode ()
 
void SetRegressionMode (bool flag)
 

Static Public Member Functions

static Pointer New ()
 

Protected Member Functions

 AutoencoderModel ()
 
virtual TargetSampleType DoPredict (const InputSampleType &input, ConfidenceValueType *quality=nullptr, ProbaSampleType *proba=nullptr) const override
 
virtual void DoPredictBatch (const InputListSampleType *, const unsigned int &startIndex, const unsigned int &size, TargetListSampleType *, ConfidenceListSampleType *quality=nullptr, ProbaListSampleType *proba=nullptr) const override
 
 ~AutoencoderModel () override
 
- Protected Member Functions inherited from otb::MachineLearningModel< itk::VariableLengthVector< TInputValue >, itk::VariableLengthVector< TInputValue > >
 MachineLearningModel ()
 
 ~MachineLearningModel () override=default
 
void PrintSelf (std::ostream &os, itk::Indent indent) const override
 

Private Attributes

ModelType m_Encoder
 
std::vector< LayerTypem_InLayers
 
itk::Array< unsigned int > m_NumberOfHiddenNeurons
 
OutLayerType m_OutLayer
 
unsigned int m_NumberOfIterations
 
unsigned int m_NumberOfIterationsFineTuning
 
double m_Epsilon
 
itk::Array< double > m_Regularization
 
itk::Array< double > m_Noise
 
itk::Array< double > m_Rho
 
itk::Array< double > m_Beta
 
double m_InitFactor
 
bool m_WriteLearningCurve
 
std::string m_LearningCurveFileName
 
bool m_WriteWeights
 

Additional Inherited Members

- Protected Attributes inherited from otb::MachineLearningModel< itk::VariableLengthVector< TInputValue >, itk::VariableLengthVector< TInputValue > >
InputListSampleType::Pointer m_InputListSample
 
InputListSampleType::Pointer m_ValidationListSample
 
TargetListSampleType::Pointer m_TargetListSample
 
ConfidenceListSampleType::Pointer m_ConfidenceListSample
 
bool m_RegressionMode
 
bool m_IsRegressionSupported
 
bool m_ConfidenceIndex
 
bool m_ProbaIndex
 
bool m_IsDoPredictBatchMultiThreaded
 
unsigned int m_Dimension
 

Detailed Description

template<class TInputValue, class NeuronType>
class otb::AutoencoderModel< TInputValue, NeuronType >

Autoencoder model wrapper class

Definition at line 78 of file otbAutoencoderModel.h.

Member Typedef Documentation

◆ ConfidenceListSampleType

template<class TInputValue , class NeuronType >
typedef Superclass::ConfidenceListSampleType otb::AutoencoderModel< TInputValue, NeuronType >::ConfidenceListSampleType

Definition at line 97 of file otbAutoencoderModel.h.

◆ ConfidenceSampleType

template<class TInputValue , class NeuronType >
typedef Superclass::ConfidenceSampleType otb::AutoencoderModel< TInputValue, NeuronType >::ConfidenceSampleType

Definition at line 96 of file otbAutoencoderModel.h.

◆ ConfidenceValueType

template<class TInputValue , class NeuronType >
typedef Superclass::ConfidenceValueType otb::AutoencoderModel< TInputValue, NeuronType >::ConfidenceValueType

Confidence map related typedefs.

Definition at line 95 of file otbAutoencoderModel.h.

◆ ConstPointer

template<class TInputValue , class NeuronType >
typedef itk::SmartPointer<const Self> otb::AutoencoderModel< TInputValue, NeuronType >::ConstPointer

Definition at line 84 of file otbAutoencoderModel.h.

◆ InputListSampleType

template<class TInputValue , class NeuronType >
typedef Superclass::InputListSampleType otb::AutoencoderModel< TInputValue, NeuronType >::InputListSampleType

Definition at line 88 of file otbAutoencoderModel.h.

◆ InputSampleType

template<class TInputValue , class NeuronType >
typedef Superclass::InputSampleType otb::AutoencoderModel< TInputValue, NeuronType >::InputSampleType

Definition at line 87 of file otbAutoencoderModel.h.

◆ InputValueType

template<class TInputValue , class NeuronType >
typedef Superclass::InputValueType otb::AutoencoderModel< TInputValue, NeuronType >::InputValueType

Definition at line 86 of file otbAutoencoderModel.h.

◆ LayerType

template<class TInputValue , class NeuronType >
typedef shark::LinearModel<shark::RealVector, NeuronType> otb::AutoencoderModel< TInputValue, NeuronType >::LayerType

Definition at line 103 of file otbAutoencoderModel.h.

◆ ListSamplePointerType

template<class TInputValue , class NeuronType >
typedef InputListSampleType::Pointer otb::AutoencoderModel< TInputValue, NeuronType >::ListSamplePointerType

Definition at line 89 of file otbAutoencoderModel.h.

◆ ModelType

template<class TInputValue , class NeuronType >
typedef shark::ConcatenatedModel<shark::RealVector> otb::AutoencoderModel< TInputValue, NeuronType >::ModelType

Neural network related typedefs.

Definition at line 102 of file otbAutoencoderModel.h.

◆ OutLayerType

template<class TInputValue , class NeuronType >
typedef shark::LinearModel<shark::RealVector, shark::LinearNeuron> otb::AutoencoderModel< TInputValue, NeuronType >::OutLayerType

Definition at line 104 of file otbAutoencoderModel.h.

◆ Pointer

template<class TInputValue , class NeuronType >
typedef itk::SmartPointer<Self> otb::AutoencoderModel< TInputValue, NeuronType >::Pointer

Definition at line 83 of file otbAutoencoderModel.h.

◆ ProbaListSampleType

template<class TInputValue , class NeuronType >
typedef Superclass::ProbaListSampleType otb::AutoencoderModel< TInputValue, NeuronType >::ProbaListSampleType

Definition at line 100 of file otbAutoencoderModel.h.

◆ ProbaSampleType

template<class TInputValue , class NeuronType >
typedef Superclass::ProbaSampleType otb::AutoencoderModel< TInputValue, NeuronType >::ProbaSampleType

Definition at line 99 of file otbAutoencoderModel.h.

◆ Self

template<class TInputValue , class NeuronType >
typedef AutoencoderModel otb::AutoencoderModel< TInputValue, NeuronType >::Self

Definition at line 81 of file otbAutoencoderModel.h.

◆ Superclass

template<class TInputValue , class NeuronType >
typedef MachineLearningModel<itk::VariableLengthVector<TInputValue>, itk::VariableLengthVector<TInputValue> > otb::AutoencoderModel< TInputValue, NeuronType >::Superclass

Definition at line 82 of file otbAutoencoderModel.h.

◆ TargetListSampleType

template<class TInputValue , class NeuronType >
typedef Superclass::TargetListSampleType otb::AutoencoderModel< TInputValue, NeuronType >::TargetListSampleType

Definition at line 92 of file otbAutoencoderModel.h.

◆ TargetSampleType

template<class TInputValue , class NeuronType >
typedef Superclass::TargetSampleType otb::AutoencoderModel< TInputValue, NeuronType >::TargetSampleType

Definition at line 91 of file otbAutoencoderModel.h.

◆ TargetValueType

template<class TInputValue , class NeuronType >
typedef Superclass::TargetValueType otb::AutoencoderModel< TInputValue, NeuronType >::TargetValueType

Definition at line 90 of file otbAutoencoderModel.h.

Constructor & Destructor Documentation

◆ AutoencoderModel()

template<class TInputValue , class NeuronType >
otb::AutoencoderModel< TInputValue, NeuronType >::AutoencoderModel
protected

Definition at line 61 of file otbAutoencoderModel.hxx.

◆ ~AutoencoderModel()

template<class TInputValue , class NeuronType >
otb::AutoencoderModel< TInputValue, NeuronType >::~AutoencoderModel
overrideprotected

Definition at line 68 of file otbAutoencoderModel.hxx.

Member Function Documentation

◆ CanReadFile()

template<class TInputValue , class NeuronType >
bool otb::AutoencoderModel< TInputValue, NeuronType >::CanReadFile ( const std::string &  )
overridevirtual

Is the input model file readable and compatible with the corresponding classifier ?

Implements otb::MachineLearningModel< itk::VariableLengthVector< TInputValue >, itk::VariableLengthVector< TInputValue > >.

Definition at line 281 of file otbAutoencoderModel.hxx.

◆ CanWriteFile()

template<class TInputValue , class NeuronType >
bool otb::AutoencoderModel< TInputValue, NeuronType >::CanWriteFile ( const std::string &  )
overridevirtual

Is the input model file writable and compatible with the corresponding classifier ?

Implements otb::MachineLearningModel< itk::VariableLengthVector< TInputValue >, itk::VariableLengthVector< TInputValue > >.

Definition at line 295 of file otbAutoencoderModel.hxx.

◆ CreateAnother()

template<class TInputValue , class NeuronType >
virtual::itk::LightObject::Pointer otb::AutoencoderModel< TInputValue, NeuronType >::CreateAnother ( void  ) const

◆ DoPredict()

template<class TInputValue , class NeuronType >
AutoencoderModel< TInputValue, NeuronType >::TargetSampleType otb::AutoencoderModel< TInputValue, NeuronType >::DoPredict ( const InputSampleType input,
ConfidenceValueType quality = nullptr,
ProbaSampleType proba = nullptr 
) const
overrideprotectedvirtual

Definition at line 357 of file otbAutoencoderModel.hxx.

◆ DoPredictBatch()

template<class TInputValue , class NeuronType >
void otb::AutoencoderModel< TInputValue, NeuronType >::DoPredictBatch ( const InputListSampleType input,
const unsigned int &  startIndex,
const unsigned int &  size,
TargetListSampleType targets,
ConfidenceListSampleType quality = nullptr,
ProbaListSampleType proba = nullptr 
) const
overrideprotectedvirtual

Definition at line 383 of file otbAutoencoderModel.hxx.

◆ GetBeta()

template<class TInputValue , class NeuronType >
virtual itk::Array<double> otb::AutoencoderModel< TInputValue, NeuronType >::GetBeta ( )
virtual

◆ GetEpsilon()

template<class TInputValue , class NeuronType >
virtual double otb::AutoencoderModel< TInputValue, NeuronType >::GetEpsilon ( )
virtual

◆ GetInitFactor()

template<class TInputValue , class NeuronType >
virtual double otb::AutoencoderModel< TInputValue, NeuronType >::GetInitFactor ( )
virtual

◆ GetLearningCurveFileName()

template<class TInputValue , class NeuronType >
virtual std::string otb::AutoencoderModel< TInputValue, NeuronType >::GetLearningCurveFileName ( )
virtual

◆ GetNameOfClass()

template<class TInputValue , class NeuronType >
virtual const char* otb::AutoencoderModel< TInputValue, NeuronType >::GetNameOfClass ( ) const
virtual

◆ GetNoise()

template<class TInputValue , class NeuronType >
virtual itk::Array<double> otb::AutoencoderModel< TInputValue, NeuronType >::GetNoise ( )
virtual

◆ GetNumberOfHiddenNeurons()

template<class TInputValue , class NeuronType >
virtual itk::Array<unsigned int> otb::AutoencoderModel< TInputValue, NeuronType >::GetNumberOfHiddenNeurons ( )
virtual

◆ GetNumberOfIterations()

template<class TInputValue , class NeuronType >
virtual unsigned int otb::AutoencoderModel< TInputValue, NeuronType >::GetNumberOfIterations ( )
virtual

◆ GetNumberOfIterationsFineTuning()

template<class TInputValue , class NeuronType >
virtual unsigned int otb::AutoencoderModel< TInputValue, NeuronType >::GetNumberOfIterationsFineTuning ( )
virtual

◆ GetRegularization()

template<class TInputValue , class NeuronType >
virtual itk::Array<double> otb::AutoencoderModel< TInputValue, NeuronType >::GetRegularization ( )
virtual

◆ GetRho()

template<class TInputValue , class NeuronType >
virtual itk::Array<double> otb::AutoencoderModel< TInputValue, NeuronType >::GetRho ( )
virtual

◆ GetWriteLearningCurve()

template<class TInputValue , class NeuronType >
virtual bool otb::AutoencoderModel< TInputValue, NeuronType >::GetWriteLearningCurve ( )
virtual

◆ GetWriteWeights()

template<class TInputValue , class NeuronType >
virtual bool otb::AutoencoderModel< TInputValue, NeuronType >::GetWriteWeights ( )
virtual

◆ Load()

template<class TInputValue , class NeuronType >
void otb::AutoencoderModel< TInputValue, NeuronType >::Load ( const std::string &  filename,
const std::string &  name = "" 
)
overridevirtual

◆ New()

template<class TInputValue , class NeuronType >
static Pointer otb::AutoencoderModel< TInputValue, NeuronType >::New ( )
static

◆ Save()

template<class TInputValue , class NeuronType >
void otb::AutoencoderModel< TInputValue, NeuronType >::Save ( const std::string &  filename,
const std::string &  name = "" 
)
overridevirtual

◆ SetBeta()

template<class TInputValue , class NeuronType >
virtual void otb::AutoencoderModel< TInputValue, NeuronType >::SetBeta ( itk::Array< double >  _arg)
virtual

◆ SetEpsilon()

template<class TInputValue , class NeuronType >
virtual void otb::AutoencoderModel< TInputValue, NeuronType >::SetEpsilon ( double  _arg)
virtual

◆ SetInitFactor()

template<class TInputValue , class NeuronType >
virtual void otb::AutoencoderModel< TInputValue, NeuronType >::SetInitFactor ( double  _arg)
virtual

◆ SetLearningCurveFileName()

template<class TInputValue , class NeuronType >
virtual void otb::AutoencoderModel< TInputValue, NeuronType >::SetLearningCurveFileName ( std::string  _arg)
virtual

◆ SetNoise()

template<class TInputValue , class NeuronType >
virtual void otb::AutoencoderModel< TInputValue, NeuronType >::SetNoise ( itk::Array< double >  _arg)
virtual

◆ SetNumberOfHiddenNeurons()

template<class TInputValue , class NeuronType >
virtual void otb::AutoencoderModel< TInputValue, NeuronType >::SetNumberOfHiddenNeurons ( itk::Array< unsigned int >  _arg)
virtual

◆ SetNumberOfIterations()

template<class TInputValue , class NeuronType >
virtual void otb::AutoencoderModel< TInputValue, NeuronType >::SetNumberOfIterations ( unsigned int  _arg)
virtual

◆ SetNumberOfIterationsFineTuning()

template<class TInputValue , class NeuronType >
virtual void otb::AutoencoderModel< TInputValue, NeuronType >::SetNumberOfIterationsFineTuning ( unsigned int  _arg)
virtual

◆ SetRegularization()

template<class TInputValue , class NeuronType >
virtual void otb::AutoencoderModel< TInputValue, NeuronType >::SetRegularization ( itk::Array< double >  _arg)
virtual

◆ SetRho()

template<class TInputValue , class NeuronType >
virtual void otb::AutoencoderModel< TInputValue, NeuronType >::SetRho ( itk::Array< double >  _arg)
virtual

◆ SetWriteLearningCurve()

template<class TInputValue , class NeuronType >
virtual void otb::AutoencoderModel< TInputValue, NeuronType >::SetWriteLearningCurve ( bool  _arg)
virtual

◆ SetWriteWeights()

template<class TInputValue , class NeuronType >
virtual void otb::AutoencoderModel< TInputValue, NeuronType >::SetWriteWeights ( bool  _arg)
virtual

◆ Train()

template<class TInputValue , class NeuronType >
void otb::AutoencoderModel< TInputValue, NeuronType >::Train
overridevirtual

◆ TrainNetwork()

template<class TInputValue , class NeuronType >
template<class T >
void otb::AutoencoderModel< TInputValue, NeuronType >::TrainNetwork ( shark::AbstractStoppingCriterion< T > &  criterion,
shark::Data< shark::RealVector > &  samples,
std::ostream &  File 
)

Definition at line 244 of file otbAutoencoderModel.hxx.

References otbMsgDevMacro.

◆ TrainOneLayer()

template<class TInputValue , class NeuronType >
template<class T >
void otb::AutoencoderModel< TInputValue, NeuronType >::TrainOneLayer ( shark::AbstractStoppingCriterion< T > &  criterion,
unsigned int  layer_index,
shark::Data< shark::RealVector > &  samples,
std::ostream &  File 
)

Definition at line 149 of file otbAutoencoderModel.hxx.

References otbMsgDevMacro.

◆ TrainOneSparseLayer()

template<class TInputValue , class NeuronType >
template<class T >
void otb::AutoencoderModel< TInputValue, NeuronType >::TrainOneSparseLayer ( shark::AbstractStoppingCriterion< T > &  criterion,
unsigned int  layer_index,
shark::Data< shark::RealVector > &  samples,
std::ostream &  File 
)

Definition at line 198 of file otbAutoencoderModel.hxx.

References otbMsgDevMacro.

Member Data Documentation

◆ m_Beta

template<class TInputValue , class NeuronType >
itk::Array<double> otb::AutoencoderModel< TInputValue, NeuronType >::m_Beta
private

Training parameters

Definition at line 185 of file otbAutoencoderModel.h.

◆ m_Encoder

template<class TInputValue , class NeuronType >
ModelType otb::AutoencoderModel< TInputValue, NeuronType >::m_Encoder
private

Internal Network

Definition at line 173 of file otbAutoencoderModel.h.

◆ m_Epsilon

template<class TInputValue , class NeuronType >
double otb::AutoencoderModel< TInputValue, NeuronType >::m_Epsilon
private

Training parameters

Definition at line 181 of file otbAutoencoderModel.h.

◆ m_InitFactor

template<class TInputValue , class NeuronType >
double otb::AutoencoderModel< TInputValue, NeuronType >::m_InitFactor
private

Training parameters

Definition at line 186 of file otbAutoencoderModel.h.

◆ m_InLayers

template<class TInputValue , class NeuronType >
std::vector<LayerType> otb::AutoencoderModel< TInputValue, NeuronType >::m_InLayers
private

Definition at line 174 of file otbAutoencoderModel.h.

◆ m_LearningCurveFileName

template<class TInputValue , class NeuronType >
std::string otb::AutoencoderModel< TInputValue, NeuronType >::m_LearningCurveFileName
private

Training parameters

Definition at line 190 of file otbAutoencoderModel.h.

◆ m_Noise

template<class TInputValue , class NeuronType >
itk::Array<double> otb::AutoencoderModel< TInputValue, NeuronType >::m_Noise
private

Training parameters

Definition at line 183 of file otbAutoencoderModel.h.

◆ m_NumberOfHiddenNeurons

template<class TInputValue , class NeuronType >
itk::Array<unsigned int> otb::AutoencoderModel< TInputValue, NeuronType >::m_NumberOfHiddenNeurons
private

Definition at line 176 of file otbAutoencoderModel.h.

◆ m_NumberOfIterations

template<class TInputValue , class NeuronType >
unsigned int otb::AutoencoderModel< TInputValue, NeuronType >::m_NumberOfIterations
private

Training parameters

Definition at line 179 of file otbAutoencoderModel.h.

◆ m_NumberOfIterationsFineTuning

template<class TInputValue , class NeuronType >
unsigned int otb::AutoencoderModel< TInputValue, NeuronType >::m_NumberOfIterationsFineTuning
private

Training parameters

Definition at line 180 of file otbAutoencoderModel.h.

◆ m_OutLayer

template<class TInputValue , class NeuronType >
OutLayerType otb::AutoencoderModel< TInputValue, NeuronType >::m_OutLayer
private

Definition at line 175 of file otbAutoencoderModel.h.

◆ m_Regularization

template<class TInputValue , class NeuronType >
itk::Array<double> otb::AutoencoderModel< TInputValue, NeuronType >::m_Regularization
private

Training parameters

Definition at line 182 of file otbAutoencoderModel.h.

◆ m_Rho

template<class TInputValue , class NeuronType >
itk::Array<double> otb::AutoencoderModel< TInputValue, NeuronType >::m_Rho
private

Training parameters

Definition at line 184 of file otbAutoencoderModel.h.

◆ m_WriteLearningCurve

template<class TInputValue , class NeuronType >
bool otb::AutoencoderModel< TInputValue, NeuronType >::m_WriteLearningCurve
private

Training parameters

Definition at line 189 of file otbAutoencoderModel.h.

◆ m_WriteWeights

template<class TInputValue , class NeuronType >
bool otb::AutoencoderModel< TInputValue, NeuronType >::m_WriteWeights
private

Training parameters

Definition at line 191 of file otbAutoencoderModel.h.


The documentation for this class was generated from the following files: