TouziEdgeDetectorExample.cxxΒΆ
Example usage:
./TouziEdgeDetectorExample Input/amst2.png Output/amstTouziEdges.png Output/amstTouziDirections.png 3
Example source code (TouziEdgeDetectorExample.cxx):
// This example illustrates the use of the \doxygen{otb}{TouziEdgeDetectorImageFilter}.
// This filter belongs to the family of the fixed false alarm rate
// edge detectors but it is appropriate for SAR images, where the
// speckle noise is considered as multiplicative. By analogy with the
// classical gradient-based edge detectors which are suited to the
// additive noise case, this filter computes a ratio of local means in
// both sides of the edge \cite{touzi88}. In order to have a
// normalized response, the following computation is performed :
// \begin{equation}
// r = 1 - min\{\frac{\mu_A}{\mu_B},\frac{\mu_B}{\mu_A} \},
// \end{equation}
// where $\mu_A$ and $\mu_B$ are the local means computed at both
// sides of the edge. In order to detect edges with any orientation,
// $r$ is computed for the 4 principal directions and the maximum
// response is kept.
//
// The first step required to use this filter is to include its header file.
#include "otbTouziEdgeDetectorImageFilter.h"
#include "otbImageFileReader.h"
#include "itkUnaryFunctorImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "otbImageFileWriter.h"
int main(int argc, char* argv[])
{
if (argc != 5)
{
std::cerr << "Usage: " << argv[0] << " inputImageFile ";
std::cerr << " outputEdgesImageFile outputDirectionsImageFile radius" << std::endl;
return EXIT_FAILURE;
}
// Then we must decide what pixel type to use for the image. We
// choose to make all computations with floating point precision
// and rescale the results between 0 and 255 in order to export PNG images.
using InternalPixelType = float;
using OutputPixelType = unsigned char;
// The images are defined using the pixel type and the dimension.
using InternalImageType = otb::Image<InternalPixelType, 2>;
using OutputImageType = otb::Image<OutputPixelType, 2>;
// The filter can be instantiated using the image types defined above.
using FilterType = otb::TouziEdgeDetectorImageFilter<InternalImageType, InternalImageType>;
// An \doxygen{otb}{ImageFileReader} class is also instantiated in order to read
// image data from a file.
using ReaderType = otb::ImageFileReader<InternalImageType>;
// An \doxygen{otb}{ImageFileWriter} is instantiated in order to write the
// output image to a file.
using WriterType = otb::ImageFileWriter<OutputImageType>;
// The intensity rescaling of the results will be carried out by the
// \code{itk::RescaleIntensityImageFilter} which is templated by the
// input and output image types.
using RescalerType = itk::RescaleIntensityImageFilter<InternalImageType, OutputImageType>;
// Both the filter and the reader are created by invoking their \code{New()}
// methods and assigning the result to SmartPointers.
ReaderType::Pointer reader = ReaderType::New();
FilterType::Pointer filter = FilterType::New();
// The same is done for the rescaler and the writer.
RescalerType::Pointer rescaler = RescalerType::New();
WriterType::Pointer writer = WriterType::New();
reader->SetFileName(argv[1]);
// The \code{itk::RescaleIntensityImageFilter} needs to know which
// is the minimu and maximum values of the output generated
// image. Those can be chosen in a generic way by using the
// \code{NumericTraits} functions, since they are templated over
// the pixel type.
rescaler->SetOutputMinimum(itk::NumericTraits<OutputPixelType>::min());
rescaler->SetOutputMaximum(itk::NumericTraits<OutputPixelType>::max());
// The image obtained with the reader is passed as input to the
// \doxygen{otb}{TouziEdgeDetectorImageFilter}. The pipeline is built as follows.
//
// \index{otb::TouziEdgeDetectorImageFilter!SetInput()}
filter->SetInput(reader->GetOutput());
rescaler->SetInput(filter->GetOutput());
writer->SetInput(rescaler->GetOutput());
// The method \code{SetRadius()} defines the size of the window to
// be used for the computation of the local means.
//
// \index{otb::LeeImageFilter!SetRadius()}
// \index{otb::LeeImageFilter!NbLooks()}
// \index{SetNbLooks()!otb::LeeImageFilter}
FilterType::SizeType Radius;
Radius[0] = atoi(argv[4]);
Radius[1] = atoi(argv[4]);
filter->SetRadius(Radius);
// The filter is executed by invoking the \code{Update()} method. If the
// filter is part of a larger image processing pipeline, calling
// \code{Update()} on a downstream filter will also trigger update of this
// filter.
filter->Update();
writer->SetFileName(argv[2]);
writer->Update();
// We can also obtain the direction of the edges by invoking the
// \code{GetOutputDirection()} method.
writer->SetFileName(argv[3]);
rescaler->SetInput(filter->GetOutputDirection());
writer->SetInput(rescaler->GetOutput());
writer->Update();
// Figure~\ref{fig:TOUZI_FILTER} shows the result of applying the Touzi
// edge detector
// filter to a SAR image.
// \begin{figure}
// \center
// \includegraphics[width=0.25\textwidth]{amst.eps}
// \includegraphics[width=0.25\textwidth]{amstTouziEdges.eps}
// \includegraphics[width=0.25\textwidth]{amstTouziDirections.eps}
// \itkcaption[Touzi Edge Detector Application]{Result of applying the
// \doxygen{otb}{TouziEdgeDetectorImageFilter} to a SAR image. From left to right :
// original image, edge intensity and edge orientation.}
// \label{fig:TOUZI_FILTER}
// \end{figure}
return EXIT_SUCCESS;
}