HarrisExample.cxxΒΆ

Example usage:

./HarrisExample Input/ROISpot5.png Output/ROISpot5Harris.png 1.5 2 0.1

Example source code (HarrisExample.cxx):

#include "otbMacro.h"
#include "otbImage.h"

#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"




// This example illustrates the use of the \doxygen{otb}{HarrisImageFilter}.
//
// The first step required to use this filter is to include its header file.

#include "otbHarrisImageToPointSetFilter.h"
#include "itkRescaleIntensityImageFilter.h"

int main(int argc, char* argv[])
{
  if (argc != 6)
  {
    std::cerr << "Usage: " << argv[0] << " inputImageFile ";
    std::cerr << " outputHarrisImageFile sigmaD sigmaI alpha" << std::endl;
    return EXIT_FAILURE;
  }

  const char* inputFilename  = argv[1];
  const char* outputFilename = argv[2];

  double SigmaD((double)::atof(argv[3]));
  double SigmaI((double)::atof(argv[4]));
  double Alpha((double)::atof(argv[5]));

  using InputPixelType         = float;
  const unsigned int Dimension = 2;
  using OutputPixelType        = unsigned char;

  using InputImageType  = otb::Image<InputPixelType, Dimension>;
  using OutputImageType = otb::Image<OutputPixelType, Dimension>;

  using ReaderType = otb::ImageFileReader<InputImageType>;

  //  The \doxygen{otb}{HarrisImageFilter} is templated over the
  //  input and output image types, so we start by
  //  defining:

  using HarrisFilterType = otb::HarrisImageFilter<InputImageType, InputImageType>;
  using RescalerType     = itk::RescaleIntensityImageFilter<InputImageType, OutputImageType>;

  using WriterType = otb::ImageFileWriter<OutputImageType>;

  ReaderType::Pointer       reader   = ReaderType::New();
  WriterType::Pointer       writer   = WriterType::New();
  HarrisFilterType::Pointer harris   = HarrisFilterType::New();
  RescalerType::Pointer     rescaler = RescalerType::New();

  reader->SetFileName(inputFilename);
  writer->SetFileName(outputFilename);

  harris->SetInput(reader->GetOutput());

  // The \doxygen{otb}{HarrisImageFilter} needs some parameters to
  // operate. The derivative computation is performed by a
  // convolution with the derivative of a Gaussian kernel of
  // variance $\sigma_D$ (derivation scale) and
  // the smoothing of the image is performed by convolving with a
  // Gaussian kernel of variance $\sigma_I$ (integration
  // scale). This allows the computation of the following matrix:
  // \begin{equation}
  // \mu(\mathbf{x},\sigma_I,\sigma_D) = \sigma_D^2 g(\sigma_I)\star
  // \left[\begin{array}{cc} L_x^2(\mathbf{x},\sigma_D) &
  // L_xL_y(\mathbf{x},\sigma_D)\\ L_xL_y(\mathbf{x},\sigma_D)&
  // L_y^2(\mathbf{x},\sigma_D) \end{array}\right]
  // \end{equation}
  // The output of the detector is $$det(\mu) - \alpha trace^2(\mu).$$

  harris->SetSigmaD(SigmaD);
  harris->SetSigmaI(SigmaI);
  harris->SetAlpha(Alpha);

  rescaler->SetOutputMinimum(itk::NumericTraits<OutputPixelType>::min());
  rescaler->SetOutputMaximum(itk::NumericTraits<OutputPixelType>::max());

  rescaler->SetInput(harris->GetOutput());
  writer->SetInput(rescaler->GetOutput());
  writer->Update();

  // Figure~\ref{fig:Harris} shows the result of applying the interest
  // point detector to a small patch extracted from a Spot 5 image.
  // \begin{figure}
  // \center
  // \includegraphics[width=0.25\textwidth]{ROISpot5.eps}
  // \includegraphics[width=0.25\textwidth]{ROISpot5Harris.eps}
  // \itkcaption[Harris Filter Application]{Result of applying the
  // \doxygen{otb}{HarrisImageFilter} to a Spot 5 image.}
  // \label{fig:Harris}
  // \end{figure}
  //
  // The output of the \doxygen{otb}{HarrisImageFilter} is an image
  // where, for each pixel, we obtain the intensity of the
  // detection. Often, the user may want to get access to the set of
  // points for which the output of the detector is higher than a
  // given threshold. This can be obtained by using the
  // \doxygen{otb}{HarrisImageToPointSetFilter}. This filter is only
  // templated over the input image type, the output being a
  // \doxygen{itk}{PointSet} with pixel type equal to the image pixel type.

  using FunctionType = otb::HarrisImageToPointSetFilter<InputImageType>;

  //  We declare now the filter and a pointer to the output point set.
  using OutputPointSetType = FunctionType::OutputPointSetType;

  FunctionType::Pointer       harrisPoints = FunctionType::New();
  OutputPointSetType::Pointer pointSet     = OutputPointSetType::New();

  //  The \doxygen{otb}{HarrisImageToPointSetFilter} takes the same
  // parameters as the \doxygen{otb}{HarrisImageFilter} and an
  // additional parameter : the threshold for the point selection.

  harrisPoints->SetInput(0, reader->GetOutput());
  harrisPoints->SetSigmaD(SigmaD);
  harrisPoints->SetSigmaI(SigmaI);
  harrisPoints->SetAlpha(Alpha);
  harrisPoints->SetLowerThreshold(10);
  pointSet = harrisPoints->GetOutput();

  harrisPoints->Update();

  //  We can now iterate through the obtained pointset and access
  //  the coordinates of the points. We start by accessing the
  //  container of the points which is encapsulated into the point
  //  set (see section \ref{sec:PointSetSection} for more
  //  information on using \doxygen{itk}{PointSet}s) and declaring
  //  an iterator to it.

  using ContainerType            = OutputPointSetType::PointsContainer;
  ContainerType* pointsContainer = pointSet->GetPoints();
  using IteratorType             = ContainerType::Iterator;
  IteratorType itList            = pointsContainer->Begin();

  //  And we get the points coordinates

  while (itList != pointsContainer->End())
  {
    using OutputPointType       = OutputPointSetType::PointType;
    OutputPointType pCoordinate = (itList.Value());
    otbLogMacro(Debug, << pCoordinate);
    ++itList;
  }

  return EXIT_SUCCESS;
}