Exact Large-Scale Mean-Shift segmentation, step 1 (smoothing)

Perform mean shift filtering

Detailed description

This application performs mean shift fitlering (multi-threaded).

Parameters

This section describes in details the parameters available for this application. Table [1] presents a summary of these parameters and the parameters keys to be used in command-line and programming languages. Application key is MeanShiftSmoothing .

[1]Table: Parameters table for Exact Large-Scale Mean-Shift segmentation, step 1 (smoothing).
Parameter Key Parameter Type Parameter Description
in Input image Input image
fout Output image Output image
foutpos Output image Output image
ram Int Int
spatialr Int Int
ranger Float Float
thres Float Float
maxiter Int Int
rangeramp Float Float
modesearch Boolean Boolean
inxml XML input parameters file XML input parameters file
outxml XML output parameters file XML output parameters file
  • Input Image: The input image.
  • Filtered output: The filtered output image.
  • Spatial image: The spatial image output. Spatial image output is a displacement map (pixel position after convergence).
  • Available RAM (Mb): Available memory for processing (in MB).
  • Spatial radius: Spatial radius of the neighborhood.
  • Range radius: Range radius defining the radius (expressed in radiometry unit) in the multi-spectral space.
  • Mode convergence threshold: Algorithm iterative scheme will stop if mean-shift vector is below this threshold or if iteration number reached maximum number of iterations.
  • Maximum number of iterations: Algorithm iterative scheme will stop if convergence hasn’t been reached after the maximum number of iterations.
  • Range radius coefficient: This coefficient makes dependent the ranger of the colorimetry of the filtered pixel : y = rangeramp*x+ranger.
  • Mode search.: If activated pixel iterative convergence is stopped if the path crosses an already converged pixel. Be careful, with this option, the result will slightly depend on thread number.
  • Load otb application from xml file: Load otb application from xml file.
  • Save otb application to xml file: Save otb application to xml file.

Example

To run this example in command-line, use the following:

otbcli_MeanShiftSmoothing -in maur_rgb.png -fout MeanShift_FilterOutput.tif -foutpos MeanShift_SpatialOutput.tif -spatialr 16 -ranger 16 -thres 0.1 -maxiter 100

To run this example from Python, use the following code snippet:

#!/usr/bin/python

# Import the otb applications package
import otbApplication

# The following line creates an instance of the MeanShiftSmoothing application
MeanShiftSmoothing = otbApplication.Registry.CreateApplication("MeanShiftSmoothing")

# The following lines set all the application parameters:
MeanShiftSmoothing.SetParameterString("in", "maur_rgb.png")

MeanShiftSmoothing.SetParameterString("fout", "MeanShift_FilterOutput.tif")

MeanShiftSmoothing.SetParameterString("foutpos", "MeanShift_SpatialOutput.tif")

MeanShiftSmoothing.SetParameterInt("spatialr", 16)

MeanShiftSmoothing.SetParameterFloat("ranger", 16)

MeanShiftSmoothing.SetParameterFloat("thres", 0.1)

MeanShiftSmoothing.SetParameterInt("maxiter", 100)

# The following line execute the application
MeanShiftSmoothing.ExecuteAndWriteOutput()

Limitations

With mode search option, the result will slightly depend on thread number.

Authors

This application has been written by OTB-Team.