A dive into the heart of
S1Tiling

a python orchestrator dedicated to

OTB User Days, 21 November 2024
Luc Hermitte (CS Group FRANCE)

https://www.orfeo-toolbox.org/otb-user-days-2024/

Agenda

The original design 3| Zoom into the kernel

2 | Goals turned into features 4 | What's next?

01

The original design

THE ORIGINAL DESIGN

WORKFLOW

0. Downloads S1 products on PEPS

1. Scans for all S1 products

2. Calibrates all S1 products

3. Cuts margins on all calibrated 1mages

4. Orthorectifies calibrated and cut images to target S2 MGRS tiles
5. Assembles up-to 2 orthorectified images per target tile

THE ORIGINAL DESIGN

ISSUES

e High I/O usage
= Many globs, at each step
= Numerous undeleted files
= Reliance on GPFS if not cautious
= A file 1s produced after each OTB application
o Complex stop/start-over
= Incomplete 1image files from previous executions
= Reliance on glob...

02

Goals turned into features

GOALS

e Industrialize
= Reduce I/O
» Handle start-over
= Be efficient
» Handle GeoTIFF metadata
= Support any S1 data provider
= Simplify installation
= Document
e Easy to evolve, and reuse

GOALS TURNED INTO FEATURES

IMPROVE /O

e Reduce I/0 usage
= Cache known filenames instead of globbing them
= Use in-memory pipelines from OTB Python API
e Automate removal of old files
e Work on local SSD 1nstead of GPFS
= Optional copy of static files (DEM, Geoid...)
= But jobs on HPC clusters need to correctly set working directories

GOALS TURNED INTO FEATURES
START-OVER

e Never regenerate what we don't need anymore
= Yet a glob on input products is required at start-up
e Distinguish incomplete . t1TT images from complete ones.

GOALS TURNED INTO FEATURES

EFFICIENCY

o All the above, plus
o Parallelise processings
e Factorise common steps

11

GOALS TURNED INTO FEATURES

OTHER FEATURES

e Automated setting of GeoTIFF metadata

e Support of any data provider thanks to EODAG
e Documented

e SITiling packet on pypi, and module on TREX
e Ready-to-use dockers

https://eodag.readthedocs.io/en/stable/
https://s1-tiling.pages.orfeo-toolbox.org/s1tiling/latest/
https://pypi.org/project/s1tiling/
https://gitlab.orfeo-toolbox.org/s1-tiling/s1tiling-dockers

03

Z.oom into the kernel

Z0O0OM INTO THE KERNEL
THE CORE IDEAS

o [n-memory pipelines of OTB Applications

e Processing chains a la make

Z0O0OM INTO THE KERNEL
THE CORE IDEAS: TASK DEPENDENCY ANALYSIS

Given all existing inputs,
Two passes:

1. build graph of all possible flows
2. trim unrequired tasks

Z0O0OM INTO THE KERNEL
THE CORE IDEAS: TASK DEPENDENCY ANALYSIS

Produits Finaux

Given all existing inputs,

Two passes:

1. build graph of all possible flows
2. trim unrequired tasks

Z0O0OM INTO THE KERNEL
THE CORE IDEAS: TASK DEPENDENCY ANALYSIS

Produits Finaux

- e
.

Given all existing inputs,

Two passes:

1. build graph of all possible flows
2. trim unrequired tasks

Z0O0OM INTO THE KERNEL
THE CORE IDEAS: TASK DEPENDENCY ANALYSIS

Produits Finaux

-\-}. .
-
o

Given all existing inputs,

Two passes:

1. build graph of all possible flows
2. trim unrequired tasks

Eventually we have a DAG that we can pass to Dask

Z00M INTO THE KERNEL

PIPELINE EXAMPLE: THE STRAIGHTFORWARD
ONE

I,)) I,
- callbration * <_g, OrthoReady t1-t2 | —Morecliicalion gl Orthorectified 33NWC t1
w‘

B concatenation e S2 IZNWC
Orthorectified 33NWC t2

orthorectification \
calibration + cut
p OrthoReady t2-t3 B@
h j

Orthorectified 33NWB t2 | _concatenation f) ooy 0o

cohcatenation

B, o N
- calloration * < g, OrthoReady t3-t4 | —ohorecliicalion gl orthorectified 33NWB t3

15

Z0OOM INTO THE KERNEL
PIPELINE EXAMPLE: A BIT MORE COMPLEX ONE

DEM VRT 33NWB N B
DEM projected on 33NWB geoid | DEM+geoid on 33NWB ground+satellite XYZ on 33NWB

A

Y

. [+
- [cal | noise | cut | ortho | Orthorectified B° 3NWB d1 t1 . ground normals on 33NWBD|
concatenation
\D B
N comaenaion) S2B°33NWB 1 N
‘ pecal | noise | cut | orthe | Orthorectified B° 33NWB d1t2 S2 ¢° NORMLIM 33NWB d1
sin(LIA) on 33NWB
oy
52 a® NORMLIM 33NWB d2
, N ——
- B cal | noise | cut | ortho) Orthorectified B° 33NWB d2 t'1 [—<oncatenation » 52 °33NWB d2
[=Y
pe cal | noise | cut | ertho Orthorectified ° 33NWB d2t'2 t 52 c° NORMLIM 33NWB dn

/

. i
- B cal | noise | cut | ortho gl Orthorectified B° 33NWB dn t'1 {—Concatenation 52 B° 33NWB dn
W
pe cal | noise | cut | ortho Orthorectified B° 33NWB dn t'2

L

16

17

Z0O0OM INTO THE KERNEL
HIGH LEVEL API

e Processings are done at each Step
» Exact Steps are instantiated by StepFactories
o Cut, Calibrate, FixThermalNoiseRemoval,
o Orthorectification, Concatenation...
= They are assembled 1nto pipelines
e Exact starting points are instantiated by F1rstStepFactories
= S1 Products
= Precise orbit files
= S2 MGRS information...

Z0O0OM INTO THE KERNEL
HIGH LEVEL API

e Processings are done at each Step
» Exact Steps are instantiated by StepFactories
o Cut, Calibrate, FixThermalNoiseRemoval,
o Orthorectification, Concatenation...
= They are assembled 1nto pipelines
e Exact starting points are instantiated by F1rstStepFactories
= S1 Products
= Precise orbit files
= S2 MGRS information...

Kernel is (now) independent of any Sentinel-1/S1Tiling specificities

171

Z00M INTO THE KERNEL

REGISTRATION EXAMPLES
THE STRAIGHTFORWARD CASE

First we have to manually define the various factories, then their sequencing

1 pipelines = PipelineDescriptionSequence(config)

A pipeline is a sequence of steps, and pipelines are also sequenced between
therzselves

Z00M INTO THE KERNEL

REGISTRATION EXAMPLES
THE STRAIGHTFORWARD CASE

First we have to manually define the various factories, then their sequencing

3
4 pipelines.register inputs(‘'basename', sl raster first inputs factory)

A pipeline is a sequence of steps, and pipelines are also sequenced between
therszrelves

Z00OM INTO THE KERNEL

REGISTRATION EXAMPLES
THE STRAIGHTFORWARD CASE

First we have to manually define the various factories, then their sequencing

calib seq = [ExtractSentinellMetadata, AnalyseBorders, Calibrate,

CorrectDenoising, CutBorders]

pipelines.register pipeline(calib seq, ‘PrepareForOrtho’,

product required= , 1S name_incremental=
pipelines.register pipeline([OrthoRectify], 'OrthoRectify’,

product required=)

15 pipelines.register pipeline([Concatenate], product required= , 15 name incremental=

A pipeline is a sequence of steps, and pipelines are also sequenced between
therszelves

Z00OM INTO THE KERNEL

REGISTRATION EXAMPLES
OR THE BIT MORE COMPLEX CASE

pipelines = PipelineDescriptionSequence(config)

Z00OM INTO THE KERNEL

REGISTRATION EXAMPLES
OR THE BIT MORE COMPLEX CASE

pipelines.register inputs('tilename', tilename first inputs factory)
pipelines.register inputs(‘'eof', eof first inputs factory)

Z00OM INTO THE KERNEL

REGISTRATION EXAMPLES
OR THE BIT MORE COMPLEX CASE

dem vrt = pipelines.register pipeline([AgglomerateDEMOnS2], 'AgglomerateDEM',
inputs={'tilename': 'tilename'})

s2 dem = pipelines.register pipeline([ProjectDEMT0oS2Tile], "ProjectDEMToS2Tile",
inputs={"indem": dem vrt})

s2 height = pipelines.register pipeline([ProjectGeoidToS2Tile, SumAllHeights], "Generate
inputs={"in s2 dem": s2 dem})

XYyZ pipelines.register pipeline([ComputeGroundAndSatPositionsOnDEMFromEOF], "ComputeGrc
inputs={'ineof': 'eof', 'inheight': s2 height})

pipelines.register pipeline([ComputeNormalsOnS2, ComputeLIAOnS2], 'ComputeLIAOnS2'
inputs={'xyz': xyz}, product required=)

19.2

ZOOM INTO THE KERNEL
THE BINDING CODE

pipelines.register extra parameters for input factories(
dag=dag,
sl file manager=sl file manager,

)

ZOOM INTO THE KERNEL
THE BINDING CODE

results : List[Outcome] = []
sltiling.libs.utils.dask.DaskContext(config) dask client:
idx, tile it enumerate(tiles to process):
res = process one tile(
tile it, idx, nb tiles,
config,
pipelines,
dask client.client,

results.extend(res)

ZOOM INTO THE KERNEL
THE BINDING CODE

nb issues = sum(bool(res) res results)
nb errors detected > 0O:
logger.warning('Execution report: %s errors detected', nb issues)

logger.info('Execution report: no error detected')
res results:
logger.log(log level(res), ' - %s', res)

Z00OM INTO THE KERNEL

HIGH LEVEL API USAGE
We define:

e a domain aware StepFactory per processing (OTB app, Python function,
External process)
e aPipelineDescription for a sequence of one or several steps.
= Multiple OTB steps will be chained in memory automatically
= All the P1pelineDescription instances are registered in a
PipelineDescriptionSequence

Then the kernel will take care of:

e Searching all possible inputs thanks to the F1rstStepFactories.
e ...that'll be used to build the reduced DAG of Dask Tasks

21

Z00OM INTO THE KERNEL
HIGH LEVEL API USAGE: StepFactories

A concrete and specialized StepFactory

e 1s configured from the execution configuration object
e relies on input products metadatas to
= define what the output filename would be
= determine the execution parameters -- according to the kind of
StepFactory
= determine what GeoTIFF metadata should be written 1n the product

22

https://s1-tiling.pages.orfeo-toolbox.org/s1tiling/latest/developers.html#step-factories

Z00OM INTO THE KERNEL

HIGH LEVEL API USAGE
A SIMPLE StepFactory EXAMPLE

Calibrate(sltiling.libs.otbpipeline.0TBStepFactory):

Z00OM INTO THE KERNEL

HIGH LEVEL API USAGE
A SIMPLE StepFactory EXAMPLE

__init_ (self, cfg: Configuration) -> ;
fname fmt = cfg.fname fmt.get('calibration', '{rootname} {calibration type} calOk
super(). 1init (cfg,

appname="'SARCalibration',

name='Calibration',

gen tmp dir=os.path.join(cfg.tmpdir, 'S1'),

gen output filename=TemplateOutputFilenameGenerator(fname fmt),

image description='{calibration type} calibrated Sentinel-{flying unit cc
)
self. calibration type cfg.calibration type
self. removethermalnoise = cfg.removethermalnoise

Z00OM INTO THE KERNEL

HIGH LEVEL API USAGE
A SIMPLE StepFactory EXAMPLE

fname fmt = cfg.fname fmt.get('calibration', '{rootname} {calibration type} calOk

_update_filename_meta pre hook(self, meta: Meta) -> Meta:
meta['calibration type'] = self. calibration type
meta

Z00OM INTO THE KERNEL

HIGH LEVEL API USAGE
A SIMPLE StepFactory EXAMPLE

update image metadata(self, meta: Meta, all inputs: InputList) ->
super().update image metadata(meta, all inputs)
‘image metadata‘ meta
imd = meta['image metadata']
imd['CALIBRATION'] = str(self. calibration type)
imd["NOISE REMOVED'] = str(self. removethermalnoise)

Z00OM INTO THE KERNEL

HIGH LEVEL API USAGE
A SIMPLE StepFactory EXAMPLE

parameters(self, meta: Meta) -> OTBParameters:

params : OTBParameters = {
‘ram' : ram(self.ram per process),
self.param in : sltiling.libs.meta.in filename(meta),
‘lut’ : self. calibration type,
'removenoise’ : self. removethermalnoise,

params

Z00OM INTO THE KERNEL
LET'S DIVE A BIT MORE

e Dask task nodes are actually filenames (not 1mage rasters)
 and the edges are P1peline instantiated from:
= PipelineDescriptionSequence
= plus input metadata
e« When Dask executes a P1peline, it instanciates generic Step instances
e The Steps will generate their output as per specified in the related
StepFactory, and also update GeoTIFF metadata.

24

https://s1-tiling.pages.orfeo-toolbox.org/s1tiling/latest/developers.html#step-factories

Z00OM INTO THE KERNEL
LET'S DIVE A BIT MORE

e Dask task nodes are actually filenames (not 1mage rasters)
 and the edges are P1peline instantiated from:
= PipelineDescriptionSequence
= plus input metadata
e When Dask executes a P1peline, it instanciates generic Step instances
e The Steps will generate their output as per specified in the related
StepFactory, and also update GeoTIFF metadata.

But none of it is your concern

241

https://s1-tiling.pages.orfeo-toolbox.org/s1tiling/latest/developers.html#step-factories

04
What's next?

26

WHAT'S NEXT?

e New chains in S1Tiling (RTC, IA...)
e A new processing chain: SLC Time Series

» => Extract S1Tiling kernel 1nto 1ts own packet
e YAML description of pipelines

