#include "itkUnaryFunctorImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "itkLabelStatisticsImageFilter.h"
int main(
int argc,
char* argv[])
{
if (argc != 8)
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " inputClassificationImage outputClassification outputClassificationScaled lambda iterations temperature " << std::endl;
std::cerr << " useRandomValue" << std::endl;
return 1;
}
const unsigned int Dimension = 2;
using LabelledPixelType = unsigned char;
ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();
const char* inputFilename = argv[1];
const char* outputFilename = argv[2];
const char* outputScaledFilename = argv[3];
reader->SetFileName(inputFilename);
writer->SetFileName(outputFilename);
MarkovRandomFieldFilterType::Pointer markovFilter = MarkovRandomFieldFilterType::New();
EnergyRegularizationType::Pointer energyRegularization = EnergyRegularizationType::New();
EnergyFidelityType::Pointer energyFidelity = EnergyFidelityType::New();
OptimizerType::Pointer optimizer = OptimizerType::New();
SamplerType::Pointer sampler = SamplerType::New();
if ((bool)(atoi(argv[7])) == true)
{
sampler->InitializeSeed(0);
optimizer->InitializeSeed(1);
markovFilter->InitializeSeed(2);
}
using LabelledStatType = itk::LabelStatisticsImageFilter<LabelledImageType, LabelledImageType>;
LabelledStatType::Pointer labelledStat = LabelledStatType::New();
labelledStat->SetInput(reader->GetOutput());
labelledStat->SetLabelInput(reader->GetOutput());
labelledStat->Update();
unsigned int nClass = labelledStat->GetNumberOfLabels();
optimizer->SetSingleParameter(0.0);
markovFilter->SetNumberOfClasses(nClass);
markovFilter->SetMaximumNumberOfIterations(atoi(argv[5]));
markovFilter->SetErrorTolerance(0.0);
markovFilter->SetLambda(atof(argv[4]));
markovFilter->SetNeighborhoodRadius(1);
markovFilter->SetEnergyRegularization(energyRegularization);
markovFilter->SetEnergyFidelity(energyFidelity);
markovFilter->SetOptimizer(optimizer);
markovFilter->SetSampler(sampler);
markovFilter->SetTrainingInput(reader->GetOutput());
markovFilter->SetInput(reader->GetOutput());
writer->SetInput(markovFilter->GetOutput());
writer->Update();
using RescaleType = itk::RescaleIntensityImageFilter<LabelledImageType, LabelledImageType>;
RescaleType::Pointer rescaleFilter = RescaleType::New();
rescaleFilter->SetOutputMinimum(0);
rescaleFilter->SetOutputMaximum(255);
rescaleFilter->SetInput(markovFilter->GetOutput());
writer->SetFileName(outputScaledFilename);
writer->SetInput(rescaleFilter->GetOutput());
writer->Update();
return EXIT_SUCCESS;
}
Writes image data to a single file with streaming process.
Creation of an "otb" image which contains metadata.
This is the implementation of the Potts model for Markov classification.
This is the optimizer class implementing the Metropolis algorithm.
This is the base class for sampler methods used in the MRF framework.
This is the class to use the Markov Random Field framework in OTB.
int main(int ac, char *av[])