OTB  10.0.0
Orfeo Toolbox
Markov/MarkovRegularizationExample.cxx
/*
* Copyright (C) 2005-2024 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* Example usage:
./MarkovRegularizationExample Input/ROI_QB_MUL_1_SVN_CLASS_MULTI.png Output/MarkovRegularization.png Output/MarkovRegularization-scaled.png 0.2 20 0.0 1
*/
// This example illustrates the use of the \doxygen{otb}{MarkovRandomFieldFilter}.
// to regularize a classification obtained previously by another classifier. Here
// we will apply the regularization to the output of an SVM classifier presented
// in \ref{ssec:LearningFromImages}.
//
// The reference image and the starting image are both going to be the original
// classification. Both regularization and fidelity energy are defined by Potts model.
//
// The convergence of the Markov Random Field is done with a random sampler
// and a Metropolis model as in example 1. As you should get use to the general
// program structure to use the MRF framework, we are not going to repeat the entire
// example. However, remember you can find the full source code for this example
// in your OTB source directory.
#include "otbImage.h"
#include "itkUnaryFunctorImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "itkLabelStatisticsImageFilter.h"
int main(int argc, char* argv[])
{
if (argc != 8)
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " inputClassificationImage outputClassification outputClassificationScaled lambda iterations temperature " << std::endl;
std::cerr << " useRandomValue" << std::endl;
return 1;
}
const unsigned int Dimension = 2;
using LabelledPixelType = unsigned char;
using LabelledImageType = otb::Image<LabelledPixelType, Dimension>;
ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();
const char* inputFilename = argv[1];
const char* outputFilename = argv[2];
const char* outputScaledFilename = argv[3];
reader->SetFileName(inputFilename);
writer->SetFileName(outputFilename);
using OptimizerType = otb::MRFOptimizerMetropolis;
MarkovRandomFieldFilterType::Pointer markovFilter = MarkovRandomFieldFilterType::New();
EnergyRegularizationType::Pointer energyRegularization = EnergyRegularizationType::New();
EnergyFidelityType::Pointer energyFidelity = EnergyFidelityType::New();
OptimizerType::Pointer optimizer = OptimizerType::New();
SamplerType::Pointer sampler = SamplerType::New();
if ((bool)(atoi(argv[7])) == true)
{
// Overpass random calculation(for test only):
sampler->InitializeSeed(0);
optimizer->InitializeSeed(1);
markovFilter->InitializeSeed(2);
}
// To find the number of classes available in the original image we use the
// \doxygen{itk}{LabelStatisticsImageFilter} and more particularly the method
// \code{GetNumberOfLabels()}.
using LabelledStatType = itk::LabelStatisticsImageFilter<LabelledImageType, LabelledImageType>;
LabelledStatType::Pointer labelledStat = LabelledStatType::New();
labelledStat->SetInput(reader->GetOutput());
labelledStat->SetLabelInput(reader->GetOutput());
labelledStat->Update();
unsigned int nClass = labelledStat->GetNumberOfLabels();
optimizer->SetSingleParameter(0.0);
markovFilter->SetNumberOfClasses(nClass);
markovFilter->SetMaximumNumberOfIterations(atoi(argv[5]));
markovFilter->SetErrorTolerance(0.0);
markovFilter->SetLambda(atof(argv[4]));
markovFilter->SetNeighborhoodRadius(1);
markovFilter->SetEnergyRegularization(energyRegularization);
markovFilter->SetEnergyFidelity(energyFidelity);
markovFilter->SetOptimizer(optimizer);
markovFilter->SetSampler(sampler);
markovFilter->SetTrainingInput(reader->GetOutput());
markovFilter->SetInput(reader->GetOutput());
writer->SetInput(markovFilter->GetOutput());
writer->Update();
using RescaleType = itk::RescaleIntensityImageFilter<LabelledImageType, LabelledImageType>;
RescaleType::Pointer rescaleFilter = RescaleType::New();
rescaleFilter->SetOutputMinimum(0);
rescaleFilter->SetOutputMaximum(255);
rescaleFilter->SetInput(markovFilter->GetOutput());
writer->SetFileName(outputScaledFilename);
writer->SetInput(rescaleFilter->GetOutput());
writer->Update();
// Figure~\ref{fig:MRF_REGULARIZATION} shows the output of the Markov Random
// Field regularization on the classification output of another method.
//
// \begin{figure}
// \center
// \includegraphics[width=0.44\textwidth]{MarkovRegularization.eps}
// \includegraphics[width=0.44\textwidth]{MarkovRegularization-scaled.eps}
// \itkcaption[MRF restoration]{Result of applying
// the \doxygen{otb}{MarkovRandomFieldFilter} to regularized the result of another
// classification. From left to right : original classification, regularized
// classification}
// \label{fig:MRF_REGULARIZATION}
// \end{figure}
return EXIT_SUCCESS;
}
Reads image data.
Writes image data to a single file with streaming process.
Creation of an "otb" image which contains metadata.
Definition: otbImage.h:92
This is the implementation of the Potts model for Markov classification.
This is the optimizer class implementing the Metropolis algorithm.
This is the base class for sampler methods used in the MRF framework.
This is the class to use the Markov Random Field framework in OTB.
int main(int ac, char *av[])
Definition: otbTestMain.h:88