OTB  10.0.0
Orfeo Toolbox
Markov/MarkovClassification2Example.cxx
/*
* Copyright (C) 2005-2024 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* Example usage:
./MarkovClassification2Example Input/QB_Suburb.png Output/MarkovRandomField2.png 1.0 5 1
*/
// Using a similar structure as the previous program and the same energy
// function, we are now going to slightly alter the program to use a
// different sampler and optimizer. The proposed sample is proposed
// randomly according to the MAP probability and the optimizer is the
// ICM which accept the proposed sample if it enable a reduction of
// the energy.
#include "otbImage.h"
#include "itkUnaryFunctorImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"
// First, we need to include header specific to these class:
int main(int argc, char* argv[])
{
if (argc != 6)
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " inputImage output lambda iterations" << std::endl;
std::cerr << " useRandomValue" << std::endl;
return 1;
}
const unsigned int Dimension = 2;
using InternalPixelType = double;
using LabelledPixelType = unsigned char;
using LabelledImageType = otb::Image<LabelledPixelType, Dimension>;
ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();
const char* inputFilename = argv[1];
const char* outputFilename = argv[2];
reader->SetFileName(inputFilename);
writer->SetFileName(outputFilename);
// And to declare these new type:
// using SamplerType = otb::MRFSamplerRandom< InputImageType, LabelledImageType>;
using OptimizerType = otb::MRFOptimizerICM;
MarkovRandomFieldFilterType::Pointer markovFilter = MarkovRandomFieldFilterType::New();
EnergyRegularizationType::Pointer energyRegularization = EnergyRegularizationType::New();
EnergyFidelityType::Pointer energyFidelity = EnergyFidelityType::New();
OptimizerType::Pointer optimizer = OptimizerType::New();
SamplerType::Pointer sampler = SamplerType::New();
if ((bool)(atoi(argv[5])) == true)
{
// Overpass random calculation(for test only):
sampler->InitializeSeed(0);
markovFilter->InitializeSeed(1);
}
unsigned int nClass = 4;
energyFidelity->SetNumberOfParameters(2 * nClass);
EnergyFidelityType::ParametersType parameters;
parameters.SetSize(energyFidelity->GetNumberOfParameters());
parameters[0] = 10.0; // Class 0 mean
parameters[1] = 10.0; // Class 0 stdev
parameters[2] = 80.0; // Class 1 mean
parameters[3] = 10.0; // Class 1 stdev
parameters[4] = 150.0; // Class 2 mean
parameters[5] = 10.0; // Class 2 stdev
parameters[6] = 220.0; // Class 3 mean
parameters[7] = 10.0; // Class 3 stde
energyFidelity->SetParameters(parameters);
// As the \doxygen{otb}{MRFOptimizerICM} does not have any parameters,
// the call to \code{optimizer->SetParameters()} must be removed
markovFilter->SetNumberOfClasses(nClass);
markovFilter->SetMaximumNumberOfIterations(atoi(argv[4]));
markovFilter->SetErrorTolerance(0.0);
markovFilter->SetLambda(atof(argv[3]));
markovFilter->SetNeighborhoodRadius(1);
markovFilter->SetEnergyRegularization(energyRegularization);
markovFilter->SetEnergyFidelity(energyFidelity);
markovFilter->SetOptimizer(optimizer);
markovFilter->SetSampler(sampler);
markovFilter->SetInput(reader->GetOutput());
using RescaleType = itk::RescaleIntensityImageFilter<LabelledImageType, LabelledImageType>;
RescaleType::Pointer rescaleFilter = RescaleType::New();
rescaleFilter->SetOutputMinimum(0);
rescaleFilter->SetOutputMaximum(255);
rescaleFilter->SetInput(markovFilter->GetOutput());
writer->SetInput(rescaleFilter->GetOutput());
writer->Update();
// Apart from these, no further modification is required.
// Figure~\ref{fig:MRF_CLASSIFICATION2} shows the output of the Markov Random
// Field classification after 5 iterations with a
// MAP random sampler and an ICM optimizer.
//
// \begin{figure}
// \center
// \includegraphics[width=0.44\textwidth]{QB_Suburb.eps}
// \includegraphics[width=0.44\textwidth]{MarkovRandomField2.eps}
// \itkcaption[MRF restoration]{Result of applying
// the \doxygen{otb}{MarkovRandomFieldFilter} to an extract from a PAN Quickbird
// image for classification. The result is obtained after 5 iterations with a
// MAP random sampler and an ICM optimizer. From left to right : original image,
// classification.}
// \label{fig:MRF_CLASSIFICATION2}
// \end{figure}
return EXIT_SUCCESS;
}
Reads image data.
Writes image data to a single file with streaming process.
Creation of an "otb" image which contains metadata.
Definition: otbImage.h:92
This is the implementation of the Gaussian model for Markov classification.
This is the implementation of the Potts model for Markov classification.
This is the optimizer class implementing the ICM algorithm.
This is the base class for sampler methods used in the MRF framework.
This is the class to use the Markov Random Field framework in OTB.
int main(int ac, char *av[])
Definition: otbTestMain.h:88