OTB  10.0.0
Orfeo Toolbox
Markov/MarkovClassification1Example.cxx
/*
* Copyright (C) 2005-2024 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* Example usage:
./MarkovClassification1Example Input/QB_Suburb.png Output/MarkovRandomField1.png 1.0 20 1.0 1
*/
// This example illustrates the details of the \doxygen{otb}{MarkovRandomFieldFilter}.
// This filter is an application of the Markov Random Fields for classification,
// segmentation or restoration.
//
// This example applies the \doxygen{otb}{MarkovRandomFieldFilter} to
// classify an image into four classes defined by their mean and variance. The
// optimization is done using an Metropolis algorithm with a random sampler. The
// regularization energy is defined by a Potts model and the fidelity by a
// Gaussian model.
//
#include "otbImage.h"
#include "itkUnaryFunctorImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"
// The first step toward the use of this filter is the inclusion of the proper
// header files.
int main(int argc, char* argv[])
{
if (argc != 7)
{
std::cerr << "Missing Parameters " << argc << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " inputImage output lambda iterations optimizerTemperature" << std::endl;
std::cerr << " useRandomValue" << std::endl;
return 1;
}
// Then we must decide what pixel type to use for the image. We
// choose to make all computations with double precision.
// The labelled image is of type unsigned char which allows up to 256 different
// classes.
const unsigned int Dimension = 2;
using InternalPixelType = double;
using LabelledPixelType = unsigned char;
using LabelledImageType = otb::Image<LabelledPixelType, Dimension>;
// We define a reader for the image to be classified, an initialization for the
// classification (which could be random) and a writer for the final
// classification.
ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();
const char* inputFilename = argv[1];
const char* outputFilename = argv[2];
reader->SetFileName(inputFilename);
writer->SetFileName(outputFilename);
// Finally, we define the different classes necessary for the Markov classification.
// A \doxygen{otb}{MarkovRandomFieldFilter} is instantiated, this is the
// main class which connect the other to do the Markov classification.
// An \doxygen{otb}{MRFSamplerRandomMAP}, which derives from the
// \doxygen{otb}{MRFSampler}, is instantiated. The sampler is in charge of
// proposing a modification for a given site. The
// \doxygen{otb}{MRFSamplerRandomMAP}, randomly pick one possible value
// according to the MAP probability.
// An \doxygen{otb}{MRFOptimizerMetropoli}, which derives from the
// \doxygen{otb}{MRFOptimizer}, is instantiated. The optimizer is in charge
// of accepting or rejecting the value proposed by the sampler. The
// \doxygen{otb}{MRFSamplerRandomMAP}, accept the proposal according to the
// variation of energy it causes and a temperature parameter.
using OptimizerType = otb::MRFOptimizerMetropolis;
// Two energy, deriving from the \doxygen{otb}{MRFEnergy} class need to be instantiated. One energy
// is required for the regularization, taking into account the relationship between neighboring pixels
// in the classified image. Here it is done with the \doxygen{otb}{MRFEnergyPotts} which implement
// a Potts model.
//
// The second energy is for the fidelity to the original data. Here it is done with an
// \doxygen{otb}{MRFEnergyGaussianClassification} class, which defines a gaussian model for the data.
// The different filters composing our pipeline are created by invoking their
// \code{New()} methods, assigning the results to smart pointers.
MarkovRandomFieldFilterType::Pointer markovFilter = MarkovRandomFieldFilterType::New();
EnergyRegularizationType::Pointer energyRegularization = EnergyRegularizationType::New();
EnergyFidelityType::Pointer energyFidelity = EnergyFidelityType::New();
OptimizerType::Pointer optimizer = OptimizerType::New();
SamplerType::Pointer sampler = SamplerType::New();
// Parameter for the \doxygen{otb}{MRFEnergyGaussianClassification} class, meand
// and standard deviation are created.
if ((bool)(atoi(argv[6])) == true)
{
// Overpass random calculation(for test only):
sampler->InitializeSeed(0);
optimizer->InitializeSeed(1);
markovFilter->InitializeSeed(2);
}
unsigned int nClass = 4;
energyFidelity->SetNumberOfParameters(2 * nClass);
EnergyFidelityType::ParametersType parameters;
parameters.SetSize(energyFidelity->GetNumberOfParameters());
parameters[0] = 10.0; // Class 0 mean
parameters[1] = 10.0; // Class 0 stdev
parameters[2] = 80.0; // Class 1 mean
parameters[3] = 10.0; // Class 1 stdev
parameters[4] = 150.0; // Class 2 mean
parameters[5] = 10.0; // Class 2 stdev
parameters[6] = 220.0; // Class 3 mean
parameters[7] = 10.0; // Class 3 stde
energyFidelity->SetParameters(parameters);
// Parameters are given to the different class an the sampler, optimizer and
// energies are connected with the Markov filter.
OptimizerType::ParametersType param(1);
param.Fill(atof(argv[5]));
optimizer->SetParameters(param);
markovFilter->SetNumberOfClasses(nClass);
markovFilter->SetMaximumNumberOfIterations(atoi(argv[4]));
markovFilter->SetErrorTolerance(0.0);
markovFilter->SetLambda(atof(argv[3]));
markovFilter->SetNeighborhoodRadius(1);
markovFilter->SetEnergyRegularization(energyRegularization);
markovFilter->SetEnergyFidelity(energyFidelity);
markovFilter->SetOptimizer(optimizer);
markovFilter->SetSampler(sampler);
// The pipeline is connected. An \doxygen{itk}{RescaleIntensityImageFilter}
// rescale the classified image before saving it.
markovFilter->SetInput(reader->GetOutput());
using RescaleType = itk::RescaleIntensityImageFilter<LabelledImageType, LabelledImageType>;
RescaleType::Pointer rescaleFilter = RescaleType::New();
rescaleFilter->SetOutputMinimum(0);
rescaleFilter->SetOutputMaximum(255);
rescaleFilter->SetInput(markovFilter->GetOutput());
writer->SetInput(rescaleFilter->GetOutput());
// Finally, the pipeline execution is triggered.
writer->Update();
// Figure~\ref{fig:MRF_CLASSIFICATION1} shows the output of the Markov Random
// Field classification after 20 iterations with a
// random sampler and a Metropolis optimizer.
//
// \begin{figure}
// \center
// \includegraphics[width=0.44\textwidth]{QB_Suburb.eps}
// \includegraphics[width=0.44\textwidth]{MarkovRandomField1.eps}
// \itkcaption[MRF restoration]{Result of applying
// the \doxygen{otb}{MarkovRandomFieldFilter} to an extract from a PAN Quickbird
// image for classification. The result is obtained after 20 iterations with a
// random sampler and a Metropolis optimizer. From left to right : original image,
// classification.}
// \label{fig:MRF_CLASSIFICATION1}
// \end{figure}
return EXIT_SUCCESS;
}
Reads image data.
Writes image data to a single file with streaming process.
Creation of an "otb" image which contains metadata.
Definition: otbImage.h:92
This is the implementation of the Gaussian model for Markov classification.
This is the implementation of the Potts model for Markov classification.
This is the optimizer class implementing the Metropolis algorithm.
This is the base class for sampler methods used in the MRF framework.
This is the class to use the Markov Random Field framework in OTB.
int main(int ac, char *av[])
Definition: otbTestMain.h:88