EstimateRPCSensorModelExample.cxxΒΆ

Example source code (EstimateRPCSensorModelExample.cxx):

// \index{otb::GCPsToRPCSensorModelImageFilter}
// \index{otb::GCPsToRPCSensorModelImageFilter!header}
//
//
// The following example illustrates the application of estimation
// of a sensor model to an image (limited to a RPC sensor model for now).

// The \doxygen{otb}{GCPsToRPCSensorModelImageFilter} estimates a RPC
// sensor model from a list of user defined GCPs. Internally, it uses
// an RpcSolver, which performs the estimation using the well
// known least-square method.

// Let's look at the minimal code required to use this
// algorithm. First, the following header defining the
// \doxygen{otb}{GCPsToRPCSensorModelImageFilter} class must be
// included.

#include <ios>
#include "otbImage.h"
#include "otbImageFileReader.h"
#include "otbGCPsToRPCSensorModelImageFilter.h"

int main(int argc, char* argv[])
{
  if (argc < 3)
  {
    std::cerr << "Usage: " << argv[0] << " infname outfname a1x a1y b1x b1y b1z ... aNx aNy bNx bNy bNz" << std::endl;
    return EXIT_FAILURE;
  }
  else if ((argc - 3) % 5 != 0)
  {
    std::cerr << "Inconsistent GCPs description!" << std::endl;
    return EXIT_FAILURE;
  }

  const char* infname  = argv[1];
  const char* outfname = argv[2];

  //  We declare the image type based on a particular pixel type and
  //  dimension. In this case the \code{float} type is used for the pixels.

  using ImageType  = otb::Image<float, 2>;
  using ReaderType = otb::ImageFileReader<ImageType>;

  using GCPsToSensorModelFilterType = otb::GCPsToRPCSensorModelImageFilter<ImageType>;

  using Point2DType = GCPsToSensorModelFilterType::Point2DType;
  using Point3DType = GCPsToSensorModelFilterType::Point3DType;

  // We instantiate reader and writer types
  ReaderType::Pointer reader = ReaderType::New();
  reader->SetFileName(infname);

  //  The \doxygen{otb}{GCPsToRPCSensorModelImageFilter} is instantiated.

  GCPsToSensorModelFilterType::Pointer rpcEstimator = GCPsToSensorModelFilterType::New();
  rpcEstimator->SetInput(reader->GetOutput());

  // We retrieve the command line parameters and put them in the
  // correct variables. Firstly, We determine the number of GCPs
  // set from the command line parameters and they are stored in:
  // \begin{itemize}
  // \item \doxygen{otb}{Point3DType} : Store the sensor point (3D ground point)
  // \item \doxygen{otb}{Point2DType} : Pixel associated in the image (2D physical coordinates)

  // Here we do not use DEM or MeanElevation. It is also possible to give a 2D
  // ground point and use the DEM or MeanElevation to get
  // the corresponding elevation.
  // \end{itemize}

  unsigned int nbGCPs = (argc - 3) / 5;

  std::cout << "Receiving " << nbGCPs << " from command line." << std::endl;

  for (unsigned int gcpId = 0; gcpId < nbGCPs; ++gcpId)
  {
    Point2DType sensorPoint;
    sensorPoint[0] = atof(argv[3 + gcpId * 5]);
    sensorPoint[1] = atof(argv[4 + gcpId * 5]);

    Point3DType geoPoint;
    geoPoint[0] = atof(argv[5 + 5 * gcpId]);
    geoPoint[1] = atof(argv[6 + 5 * gcpId]);
    geoPoint[2] = atof(argv[7 + 5 * gcpId]);

    std::cout << "Adding GCP sensor: " << sensorPoint << " <-> geo: " << geoPoint << std::endl;

    rpcEstimator->AddGCP(sensorPoint, geoPoint);
  }

  // Note that the \doxygen{otb}{GCPsToRPCSensorModelImageFilter} needs
  // at least 20 GCPs to estimate a proper RPC sensor model,
  // although no warning will be reported to the user if
  // the number of GCPs is lower than 20.
  // Actual estimation of the sensor model takes place in the
  // \code{GenerateOutputInformation()} method.

  rpcEstimator->GetOutput()->UpdateOutputInformation();

  // The result of the RPC model estimation and the residual ground
  // error is then saved in a txt file. Note that This filter does
  // not modify the image buffer, but only the metadata.

  std::ofstream ofs;
  ofs.open(outfname);

  // Set floatfield to format properly
  ofs.setf(std::ios::fixed, std::ios::floatfield);
  ofs.precision(10);

  auto outputRPC = boost::any_cast<otb::Projection::RPCParam>(rpcEstimator->GetOutput()->GetImageMetadata()[otb::MDGeom::RPC]);

  ofs << outputRPC.ToJSON() << std::endl;
  ofs << "Residual ground error: " << rpcEstimator->GetRMSGroundError() << std::endl;
  ofs.close();

  // The output image can be now given to the \doxygen{otb}{orthorectificationFilter}.
  // Note that this filter allows also to import GCPs from the image
  // metadata, if any.

  return EXIT_SUCCESS;
}