CloudDetectionExample.cxxΒΆ

Example usage:

./CloudDetectionExample Input/CloudsOnReunion.tif \
                        Output/CloudDetectionOutput.tif \
                        Output/pretty_CloudsOnReunion.png \
                        Output/pretty_CloudDetectionOutput.png \
                        553 \
                        467 \
                        734 \
                        581 \
                        0.4 \
                        0.6 \
                        1.0

Example source code (CloudDetectionExample.cxx):

// The cloud detection functor is a processing chain composed by the
// computation of a spectral angle (with SpectralAngleFunctor).  The
// result is multiplied by a gaussian factor (with
// CloudEstimatorFunctor) and finally thresholded to obtain a binary
// image (with CloudDetectionFilter).  However, modifications can be
// added in the pipeline to adapt to a particular situation.
//
// This example demonstrates the use of the
// \doxygen{otb}{CloudDetectionFilter}.  This filter uses the spectral
// angle principle to measure the radiometric gap between a reference
// pixel and the other pixels of the image.
//
// The first step toward the use of this filter is the inclusion of
// the proper header files.

#include "otbCloudDetectionFilter.h"

#include "otbImage.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "otbVectorRescaleIntensityImageFilter.h"
#include "otbMultiChannelExtractROI.h"

int main(int argc, char* argv[])
{

  if (argc != 12)
  {
    std::cerr << "Usage: " << argv[0];
    std::cerr << "inputFileName outputFileName printableInputFileName printableOutputFileName";
    std::cerr << "firstPixelComponent secondPixelComponent thirdPixelComponent fourthPixelComponent ";
    std::cerr << "variance ";
    std::cerr << "minThreshold maxThreshold " << std::endl;
    return EXIT_FAILURE;
  }

  const unsigned int Dimension = 2;
  // Then we must decide what pixel type to use for the images. We choose to do
  // all the computations in double precision.

  using InputPixelType  = double;
  using OutputPixelType = double;

  //  The images are defined using the pixel type and the
  //  dimension. Please note that the
  //  \doxygen{otb}{CloudDetectionFilter} needs an
  //  \doxygen{otb}{VectorImage} as input to handle multispectral
  //  images.

  using VectorImageType = otb::VectorImage<InputPixelType, Dimension>;
  using VectorPixelType = VectorImageType::PixelType;
  using OutputImageType = otb::Image<OutputPixelType, Dimension>;

  // We define the functor type that the filter will use. We use the
  // \doxygen{otb}{CloudDetectionFunctor}.

  using FunctorType = otb::Functor::CloudDetectionFunctor<VectorPixelType, OutputPixelType>;

  // Now we can define the \doxygen{otb}{CloudDetectionFilter} that
  // takes a multi-spectral image as input and produces a binary
  // image.

  using CloudDetectionFilterType = otb::CloudDetectionFilter<VectorImageType, OutputImageType, FunctorType>;

  //  An \doxygen{otb}{ImageFileReader} class is also instantiated in
  //  order to read image data from a file. Then, an
  //  \doxygen{otb}{ImageFileWriter} is instantiated in order to write
  //  the output image to a file.

  using ReaderType = otb::ImageFileReader<VectorImageType>;
  using WriterType = otb::ImageFileWriter<OutputImageType>;

  // The different filters composing our pipeline are created by invoking their
  // \code{New()} methods, assigning the results to smart pointers.

  ReaderType::Pointer               reader         = ReaderType::New();
  CloudDetectionFilterType::Pointer cloudDetection = CloudDetectionFilterType::New();
  WriterType::Pointer               writer         = WriterType::New();

  reader->SetFileName(argv[1]);
  cloudDetection->SetInput(reader->GetOutput());

  // The \doxygen{otb}{CloudDetectionFilter} needs to have a reference
  // pixel corresponding to the spectral content likely to represent a
  // cloud. This is done by passing a pixel to the filter. Here we
  // suppose that the input image has four spectral bands.

  VectorPixelType referencePixel;
  referencePixel.SetSize(4);
  referencePixel.Fill(0.);
  referencePixel[0] = (atof(argv[5]));
  referencePixel[1] = (atof(argv[6]));
  referencePixel[2] = (atof(argv[7]));
  referencePixel[3] = (atof(argv[8]));
  cloudDetection->SetReferencePixel(referencePixel);

  // We must also set the variance parameter of the filter and the
  // parameter of the gaussian functor.  The bigger the value, the
  // more tolerant the detector will be.

  cloudDetection->SetVariance(atof(argv[9]));

  // The minimum and maximum thresholds are set to binarise the final result.
  // These values have to be between 0 and 1.

  cloudDetection->SetMinThreshold(atof(argv[10]));
  cloudDetection->SetMaxThreshold(atof(argv[11]));

  writer->SetFileName(argv[2]);
  writer->SetInput(cloudDetection->GetOutput());
  writer->Update();

  // Figure~\ref{fig:CLOUDDETECTION_FILTER} shows the result of applying
  // the cloud detection filter to a cloudy image.
  // \begin{figure} \center
  // \includegraphics[width=0.44\textwidth]{pretty_CloudsOnReunion.eps}
  // \includegraphics[width=0.44\textwidth]{pretty_CloudDetectionOutput.eps}
  // \itkcaption[Cloud Detection Example]{From left to right : original image, cloud mask resulting from processing.}
  // \label{fig:CLOUDDETECTION_FILTER}
  // \end{figure}

  // Pretty image creation for printing
  using OutputPrettyImageType  = otb::Image<unsigned char, Dimension>;
  using InputPrettyImageType   = otb::VectorImage<unsigned char, Dimension>;
  using WriterPrettyOutputType = otb::ImageFileWriter<OutputPrettyImageType>;
  using WriterPrettyInputType  = otb::ImageFileWriter<InputPrettyImageType>;
  using RescalerOutputType     = itk::RescaleIntensityImageFilter<OutputImageType, OutputPrettyImageType>;
  using RescalerInputType      = otb::VectorRescaleIntensityImageFilter<VectorImageType, InputPrettyImageType>;
  using ChannelExtractorType   = otb::MultiChannelExtractROI<InputPixelType, InputPixelType>;

  ChannelExtractorType::Pointer  selecter          = ChannelExtractorType::New();
  RescalerInputType::Pointer     inputRescaler     = RescalerInputType::New();
  WriterPrettyInputType::Pointer prettyInputWriter = WriterPrettyInputType::New();
  selecter->SetInput(reader->GetOutput());
  selecter->SetChannel(3);
  selecter->SetChannel(2);
  selecter->SetChannel(1);
  inputRescaler->SetInput(selecter->GetOutput());
  VectorPixelType minimum, maximum;
  minimum.SetSize(3);
  maximum.SetSize(3);
  minimum.Fill(0);
  maximum.Fill(255);
  inputRescaler->SetOutputMinimum(minimum);
  inputRescaler->SetOutputMaximum(maximum);
  prettyInputWriter->SetFileName(argv[3]);
  prettyInputWriter->SetInput(inputRescaler->GetOutput());

  RescalerOutputType::Pointer     outputRescaler     = RescalerOutputType::New();
  WriterPrettyOutputType::Pointer prettyOutputWriter = WriterPrettyOutputType::New();
  outputRescaler->SetInput(cloudDetection->GetOutput());
  outputRescaler->SetOutputMinimum(0);
  outputRescaler->SetOutputMaximum(255);
  prettyOutputWriter->SetFileName(argv[4]);
  prettyOutputWriter->SetInput(outputRescaler->GetOutput());

  prettyInputWriter->Update();
  prettyOutputWriter->Update();

  return EXIT_SUCCESS;
}