FineRegistrationImageFilterExample.cxxΒΆ
Example usage:
./FineRegistrationImageFilterExample Input/StereoFixed.png \
Input/StereoMoving.png \
Output/fcDisplacementFieldOutput-horizontal.png \
Output/fcDisplacementFieldOutput-vertical.png \
Output/fcCorrelFieldOutput.png \
Output/fcDResampledOutput2.png \
1.0 \
5 \
3 \
0.1
Example usage:
./FineRegistrationImageFilterExample Input/StereoFixed.png \
Input/StereoMoving.png \
Output/fcMRSDDisplacementFieldOutput-horizontal.png \
Output/fcMRSDDisplacementFieldOutput-vertical.png \
Output/fcMRSDCorrelFieldOutput.png \
Output/fcMRSDDResampledOutput2.png \
1.0 \
5 \
3 \
0.1 \
mrsd
Example source code (FineRegistrationImageFilterExample.cxx):
// This example demonstrates the use of the \doxygen{otb}{FineRegistrationImageFilter}. This filter performs deformation estimation
// using the classical extrema of image-to-image metric look-up in a search window.
//
// The first step toward the use of these filters is to include the proper header files.
#include "otbImageFileWriter.h"
#include "otbImageFileReader.h"
#include "itkUnaryFunctorImageFilter.h"
#include "itkRecursiveGaussianImageFilter.h"
#include "itkWarpImageFilter.h"
#include "itkMeanReciprocalSquareDifferenceImageToImageMetric.h"
#include "otbFineRegistrationImageFilter.h"
#include "otbImageOfVectorsToMonoChannelExtractROI.h"
#include "itkRescaleIntensityImageFilter.h"
#include "itkCastImageFilter.h"
#include <iostream>
int main(int argc, char** argv)
{
if (argc < 11)
{
std::cerr << "Usage: " << argv[0];
std::cerr << " fixedFileName movingFileName fieldOutNameHorizontal fieldOutNameVertical fieldMetric warped ";
std::cerr << "smoothingSigma metricRadius explorationRadius subpixelPrecision";
return EXIT_FAILURE;
}
const unsigned int ImageDimension = 2;
using PixelType = double;
using DisplacementPixelType = itk::Vector<double, ImageDimension>;
using OutputPixelType = unsigned char;
using OutputImageType = otb::Image<OutputPixelType, ImageDimension>;
// Several type of \doxygen{otb}{Image} are required to represent the input image, the metric field,
// and the deformation field.
// Allocate Images
using InputImageType = otb::Image<PixelType, ImageDimension>;
using MetricImageType = otb::Image<PixelType, ImageDimension>;
using DisplacementFieldType = otb::Image<DisplacementPixelType, ImageDimension>;
using InputReaderType = otb::ImageFileReader<InputImageType>;
InputReaderType::Pointer fReader = InputReaderType::New();
fReader->SetFileName(argv[1]);
InputReaderType::Pointer mReader = InputReaderType::New();
mReader->SetFileName(argv[2]);
// To make the metric estimation more robust, the first
// required step is to blur the input images. This is done using the
// \doxygen{itk}{RecursiveGaussianImageFilter}:
// Blur input images
using InputBlurType = itk::RecursiveGaussianImageFilter<InputImageType, InputImageType>;
InputBlurType::Pointer fBlur = InputBlurType::New();
fBlur->SetInput(fReader->GetOutput());
fBlur->SetSigma(atof(argv[7]));
InputBlurType::Pointer mBlur = InputBlurType::New();
mBlur->SetInput(mReader->GetOutput());
mBlur->SetSigma(atof(argv[7]));
// Now, we declare and instantiate the \doxygen{otb}{FineRegistrationImageFilter} which is going to perform the registration:
// Create the filter
using RegistrationFilterType = otb::FineRegistrationImageFilter<InputImageType, MetricImageType, DisplacementFieldType>;
RegistrationFilterType::Pointer registrator = RegistrationFilterType::New();
registrator->SetMovingInput(mBlur->GetOutput());
registrator->SetFixedInput(fBlur->GetOutput());
// Some parameters need to be specified to the filter:
// \begin{itemize}
// \item The area where the search is performed. This area is defined by its radius:
using RadiusType = RegistrationFilterType::SizeType;
RadiusType searchRadius;
searchRadius[0] = atoi(argv[8]);
searchRadius[1] = atoi(argv[8]);
registrator->SetSearchRadius(searchRadius);
std::cout << "Exploration radius " << registrator->GetSearchRadius() << std::endl;
// \item The window used to compute the local metric. This window is also defined by its radius:
RadiusType metricRadius;
metricRadius[0] = atoi(argv[9]);
metricRadius[1] = atoi(argv[9]);
registrator->SetRadius(metricRadius);
std::cout << "Metric radius " << registrator->GetRadius() << std::endl;
// We need to set the sub-pixel accuracy we want to obtain:
registrator->SetConvergenceAccuracy(atof(argv[10]));
// The default matching metric used by the \doxygen{otb}{FineRegistrationImageFilter} is standard correlation.
// However, we may also use any other image-to-image metric provided by ITK. For instance, here is how we
// would use the \doxygen{itk}{MutualInformationImageToImageMetric} (do not forget to include the proper header).
if (argc > 11)
{
using MRSDMetricType = itk::MeanReciprocalSquareDifferenceImageToImageMetric<InputImageType, InputImageType>;
MRSDMetricType::Pointer mrsdMetric = MRSDMetricType::New();
registrator->SetMetric(mrsdMetric);
// The \doxygen{itk}{MutualInformationImageToImageMetric} produces low value for poor matches, therefore, the filter has
// to maximize the metric :
registrator->MinimizeOff();
}
// \end{itemize}
// The execution of the \doxygen{otb}{FineRegistrationImageFilter} will be triggered by
// the \code{Update()} call on the writer at the end of the
// pipeline. Make sure to use a
// \doxygen{otb}{ImageFileWriter} if you want to benefit
// from the streaming features.
using ChannelExtractionFilterType = otb::ImageOfVectorsToMonoChannelExtractROI<DisplacementFieldType, InputImageType>;
ChannelExtractionFilterType::Pointer channelExtractor = ChannelExtractionFilterType::New();
channelExtractor->SetInput(registrator->GetOutputDisplacementField());
channelExtractor->SetChannel(1);
using RescalerType = itk::RescaleIntensityImageFilter<InputImageType, OutputImageType>;
RescalerType::Pointer fieldRescaler = RescalerType::New();
fieldRescaler->SetInput(channelExtractor->GetOutput());
fieldRescaler->SetOutputMaximum(255);
fieldRescaler->SetOutputMinimum(0);
using DFWriterType = otb::ImageFileWriter<OutputImageType>;
DFWriterType::Pointer dfWriter = DFWriterType::New();
dfWriter->SetFileName(argv[3]);
dfWriter->SetInput(fieldRescaler->GetOutput());
dfWriter->Update();
channelExtractor->SetChannel(2);
dfWriter->SetFileName(argv[4]);
dfWriter->Update();
using WarperType = itk::WarpImageFilter<InputImageType, InputImageType, DisplacementFieldType>;
WarperType::Pointer warper = WarperType::New();
InputImageType::PixelType padValue = 4.0;
warper->SetInput(mReader->GetOutput());
warper->SetDisplacementField(registrator->GetOutputDisplacementField());
warper->SetEdgePaddingValue(padValue);
using MetricRescalerType = itk::RescaleIntensityImageFilter<MetricImageType, OutputImageType>;
MetricRescalerType::Pointer metricRescaler = MetricRescalerType::New();
metricRescaler->SetInput(registrator->GetOutput());
metricRescaler->SetOutputMinimum(0);
metricRescaler->SetOutputMaximum(255);
using WriterType = otb::ImageFileWriter<OutputImageType>;
WriterType::Pointer writer1 = WriterType::New();
writer1->SetInput(metricRescaler->GetOutput());
writer1->SetFileName(argv[5]);
writer1->Update();
using CastFilterType = itk::CastImageFilter<InputImageType, OutputImageType>;
CastFilterType::Pointer caster = CastFilterType::New();
caster->SetInput(warper->GetOutput());
WriterType::Pointer writer2 = WriterType::New();
writer2->SetFileName(argv[6]);
writer2->SetInput(caster->GetOutput());
writer2->Update();
// Figure~\ref{fig:FineCorrelationImageFilterOUTPUT} shows the result of
// applying the \doxygen{otb}{FineRegistrationImageFilter}.
//
// \begin{figure}
// \center
// \includegraphics[width=0.2\textwidth]{StereoFixed.eps}
// \includegraphics[width=0.2\textwidth]{StereoMoving.eps}
// \includegraphics[width=0.2\textwidth]{fcCorrelFieldOutput.eps}
// \includegraphics[width=0.2\textwidth]{fcMRSDCorrelFieldOutput.eps}
// \includegraphics[width=0.2\textwidth]{fcDResampledOutput2.eps}
// \includegraphics[width=0.2\textwidth]{fcMRSDDResampledOutput2.eps}
// \includegraphics[width=0.2\textwidth]{fcDisplacementFieldOutput-horizontal.eps}
// \includegraphics[width=0.2\textwidth]{fcMRSDDisplacementFieldOutput-horizontal.eps}
// \itkcaption[Displacement field and resampling from fine registration]{From left
// to right and top to bottom: fixed input image, moving image with a low stereo angle,
// local correlation field, local mean reciprocal square difference field,
// resampled image based on correlation, resampled image based on mean reciprocal square difference,
// estimated epipolar deformation using on correlation,
// estimated epipolar deformation using mean reciprocal square difference.
// }
// \label{fig:FineCorrelationImageFilterOUTPUT}
// \end{figure}
return EXIT_SUCCESS;
}