OGRLayerClassifier¶
Classify an OGR layer based on a machine learning model and a list of features to consider.
Description¶
This application will apply a trained machine learning model on the selected feature to get a classification of each geometry contained in an OGR layer. The list of feature must match the list used for training. The predicted label is written in the user defined field for each geometry.
Parameters¶
Name of the input shapefile -inshp vectorfile
Mandatory
Name of the input shapefile
XML file containing mean and variance of each feature -instats filename [dtype]
Mandatory
XML file containing mean and variance of each feature.
Input model filename -insvm filename [dtype]
Mandatory
Input model filename.
Features -feat string1 string2...
Features to be calculated
Field containing the predicted class -cfield string
Default value: predicted
Field containing the predicted class
Examples¶
From the command-line:
otbcli_OGRLayerClassifier -inshp vectorData.shp -instats meanVar.xml -insvm svmModel.svm -feat perimeter -cfield predicted
From Python:
import otbApplication
app = otbApplication.Registry.CreateApplication("OGRLayerClassifier")
app.SetParameterString("inshp", "vectorData.shp")
app.SetParameterString("instats", "meanVar.xml")
app.SetParameterString("insvm", "svmModel.svm")
app.SetParameterStringList("feat", ['perimeter'])
app.SetParameterString("cfield", "predicted")
app.ExecuteAndWriteOutput()
Limitations¶
Experimental. Only shapefiles are supported for now.