LAIAndPROSAILToSensorResponse.cxxΒΆ
Example usage:
./LAIAndPROSAILToSensorResponse Input/LAIverySmallFSATSW.tif \
Input/Simu_label_LAI.png \
Input/Simu_mask_LAI_1.png \
Input/label-params-SO-2006-Level-2.txt \
Input/acqui-params.txt \
Input/Radiometry/Test/rep6S.dat \
Output/siTvLAIAndPROSAILToSensorResponse.tif \
5
Example source code (LAIAndPROSAILToSensorResponse.cxx):
// The following code is an example of Sensor spectral response image generated using image of labeled objects image, objects properties (vegetation classes are
// handled using PROSAIL model, non-vegetation classes are characterized using \href{http://speclib.jpl.nasa.gov/}{Aster database} characteristics provided by a
// text file), acquisition parameters, sensor characteristics, and LAI (Leaf Area Index) image.
//
// Sensor RSR is modeled by 6S (Second Simulation of a Satellite Signal in the Solar Spectrum) model \cite{Vermote1997}. Detailed information about 6S can be
// found \href{http://6s.ltdri.org/6S_code2_thiner_stuff/6S_Manual_Part_1.pdf}{here}.
//
// Let's look at the minimal code required to use this algorithm. First, the
// following headers must be included.
#include "otbImageFileWriter.h"
#include "otbImageFileReader.h"
#include "otbVectorDataFileReader.h"
#include "otbStandardWriterWatcher.h"
#include "itkImageRegionConstIterator.h"
#include "otbMultiChannelExtractROI.h"
#include "itkOrImageFilter.h"
#include "otbLeafParameters.h"
#include "otbReduceSpectralResponse.h"
#include "otbImageSimulationMethod.h"
#include "otbSpatialisationFilter.h"
#include "otbAttributesMapLabelObject.h"
#include "itkTernaryFunctorImageFilter.h"
#include "itkUnaryFunctorImageFilter.h"
#include "otbVectorDataToLabelMapWithAttributesFilter.h"
namespace otb
{
// \code{ImageUniqueValuesCalculator} class is defined here. Method \code{GetUniqueValues()} returns an array with all values contained in an image.
// This class is implemented and used to test if all labels in labeled image are present in label parameter file.
template <class TImage>
class ITK_EXPORT ImageUniqueValuesCalculator : public itk::Object
{
public:
using Self = ImageUniqueValuesCalculator<TImage>;
using Superclass = itk::Object;
using Pointer = itk::SmartPointer<Self>;
using ConstPointer = itk::SmartPointer<const Self>;
itkNewMacro(Self);
itkTypeMacro(ImageUniqueValuesCalculator, itk::Object);
itkStaticConstMacro(ImageDimension, unsigned int, TImage::ImageDimension);
using PixelType = typename TImage::PixelType;
using ImageType = TImage;
using ArrayType = std::vector<PixelType>;
using ImagePointer = typename ImageType::Pointer;
using ImageConstPointer = typename ImageType::ConstPointer;
virtual void SetImage(const ImageType* image)
{
if (m_Image != image)
{
m_Image = image;
this->Modified();
}
}
ArrayType GetUniqueValues() const
{
ArrayType uniqueValues;
if (!m_Image)
{
return uniqueValues;
}
itk::ImageRegionConstIterator<ImageType> it(m_Image, m_Image->GetRequestedRegion());
uniqueValues.push_back(it.Get());
++it;
while (!it.IsAtEnd())
{
if (std::find(uniqueValues.begin(), uniqueValues.end(), it.Get()) == uniqueValues.end())
{
uniqueValues.push_back(it.Get());
}
++it;
}
return uniqueValues;
}
protected:
ImageUniqueValuesCalculator()
{
m_Image = nullptr;
}
~ImageUniqueValuesCalculator() override
{
}
void PrintSelf(std::ostream& os, itk::Indent indent) const override
{
Superclass::PrintSelf(os, indent);
os << indent << "Image: " << m_Image.GetPointer() << std::endl;
}
private:
ImageUniqueValuesCalculator(const Self&) = delete;
void operator=(const Self&) = delete;
ImageConstPointer m_Image;
}; // class ImageUniqueValuesCalculator
namespace Functor
{
// \code{ProsailSimulatorFunctor} functor is defined here.
//
template <class TLAI, class TLabel, class TMask, class TOutput, class TLabelSpectra, class TLabelParameter, class TAcquistionParameter, class TSatRSR>
class ProsailSimulatorFunctor
{
public:
/** Standard class typedefs */
// \code{ProsailSimulatorFunctor} functor is defined here.
//
using LAIPixelType = TLAI;
using LabelPixelType = TLabel;
using MaskPixelType = TMask;
using OutputPixelType = TOutput;
using LabelSpectraType = TLabelSpectra;
using LabelParameterType = TLabelParameter;
using AcquistionParameterType = TAcquistionParameter;
using SatRSRType = TSatRSR;
using SatRSRPointerType = typename SatRSRType::Pointer;
using ProspectType = typename otb::ProspectModel;
using SailType = typename otb::SailModel;
using PrecisionType = double;
using PairType = std::pair<PrecisionType, PrecisionType>;
using VectorPairType = typename std::vector<PairType>;
using ResponseType = otb::SpectralResponse<PrecisionType, PrecisionType>;
using ResponsePointerType = ResponseType::Pointer;
using ReduceResponseType = otb::ReduceSpectralResponse<ResponseType, SatRSRType>;
using ReduceResponseTypePointerType = typename ReduceResponseType::Pointer;
// In this example spectra are generated form $400$ to $2400nm$. the number of simulated band is set by \code{SimNbBands} value.
//
static const unsigned int SimNbBands = 2000;
/** Constructor */
ProsailSimulatorFunctor()
{
m_SatRSR = SatRSRType::New();
m_InvertedMask = false;
}
/** Destructor */
~ProsailSimulatorFunctor(){};
void SetInvertedMask(bool ivm)
{
m_InvertedMask = ivm;
}
/** Implementation of the () operator*/
inline OutputPixelType operator()(const LAIPixelType& lai, const LabelPixelType& label, const MaskPixelType& mask)
{
// mask value is read to know if the pixel have to be calculated, it is set to 0 otherwise.
OutputPixelType pix;
pix.SetSize(m_SatRSR->GetNbBands());
if ((!mask && !m_InvertedMask) || (mask && m_InvertedMask))
{
for (unsigned int i = 0; i < m_SatRSR->GetNbBands(); i++)
pix[i] = static_cast<typename OutputPixelType::ValueType>(0);
return pix;
}
// Object reflectance \code{hxSpectrum} is calculated. If object label correspond to vegetation label then Prosail code is used, aster database is used
// otherwise.
VectorPairType hxSpectrum;
for (unsigned int i = 0; i < SimNbBands; i++)
{
PairType resp;
resp.first = static_cast<PrecisionType>((400.0 + i) / 1000);
hxSpectrum.push_back(resp);
}
// either the spectrum has to be simulated by Prospect+Sail
if (m_LabelParameters.find(label) != m_LabelParameters.end())
{
ProspectType::Pointer prospect = ProspectType::New();
prospect->SetInput(m_LabelParameters[label]);
SailType::Pointer sail = SailType::New();
sail->SetLAI(lai);
sail->SetAngl(m_AcquisitionParameters[std::string("Angl")]);
sail->SetPSoil(m_AcquisitionParameters[std::string("PSoil")]);
sail->SetSkyl(m_AcquisitionParameters[std::string("Skyl")]);
sail->SetHSpot(m_AcquisitionParameters[std::string("HSpot")]);
sail->SetTTS(m_AcquisitionParameters[std::string("TTS")]);
sail->SetTTO(m_AcquisitionParameters[std::string("TTO")]);
sail->SetPSI(m_AcquisitionParameters[std::string("PSI")]);
sail->SetReflectance(prospect->GetReflectance());
sail->SetTransmittance(prospect->GetTransmittance());
sail->Update();
for (unsigned int i = 0; i < SimNbBands; i++)
{
hxSpectrum[i].second = static_cast<typename OutputPixelType::ValueType>(sail->GetHemisphericalReflectance()->GetResponse()[i].second);
}
}
// or the spectra has been set from outside the functor (ex. bare soil, etc.)
else if (m_LabelSpectra.find(label) != m_LabelSpectra.end())
{
for (unsigned int i = 0; i < SimNbBands; i++)
hxSpectrum[i].second = static_cast<typename OutputPixelType::ValueType>(m_LabelSpectra[label][i]);
}
// or the class does not exist
else
{
for (unsigned int i = 0; i < SimNbBands; i++)
hxSpectrum[i].second = static_cast<typename OutputPixelType::ValueType>(0);
}
// Spectral response \code{aResponse} is set using \code{hxSpectrum}.
ResponseType::Pointer aResponse = ResponseType::New();
aResponse->SetResponse(hxSpectrum);
// Satellite RSR is initialized and set with \code{aResponse}. Reflectance
// mode is used in this case to take into account solar irradiance into
// spectral response reduction.
ReduceResponseTypePointerType reduceResponse = ReduceResponseType::New();
reduceResponse->SetInputSatRSR(m_SatRSR);
reduceResponse->SetInputSpectralResponse(aResponse);
reduceResponse->SetReflectanceMode(true);
reduceResponse->CalculateResponse();
VectorPairType reducedResponse = reduceResponse->GetReduceResponse()->GetResponse();
// \code{pix} value is returned for desired Satellite bands
for (unsigned int i = 0; i < m_SatRSR->GetNbBands(); i++)
pix[i] = static_cast<typename OutputPixelType::ValueType>(reducedResponse[i].second);
return pix;
}
bool operator!=(const ProsailSimulatorFunctor& other) const
{
return (m_AcquisitionParameters != other.m_AcquisitionParameters || m_LabelParameters != other.m_LabelParameters);
}
bool operator==(const ProsailSimulatorFunctor& other) const
{
return (m_AcquisitionParameters == other.m_AcquisitionParameters && m_LabelParameters == other.m_LabelParameters);
}
/** The spectra associated with labels are supposed to have the same
* sampling as a Prosail simulation, that is, 2000 bands starting at
* 400nm up to 2400 nm*/
inline void SetLabelSpectra(const TLabelSpectra& lSpectra)
{
m_LabelSpectra = lSpectra;
}
inline void SetLabelParameters(const TLabelParameter& lParameters)
{
m_LabelParameters = lParameters;
}
inline void SetAcquisitionParameters(const TAcquistionParameter& aParameters)
{
m_AcquisitionParameters = aParameters;
}
inline void SetRSR(const SatRSRPointerType rsr)
{
m_SatRSR = rsr;
}
inline SatRSRPointerType GetRSR() const
{
return m_SatRSR;
}
protected:
/** Spectra associated to labels*/
LabelSpectraType m_LabelSpectra;
/** Prospect+sail parameters to labels*/
LabelParameterType m_LabelParameters;
/** Prospect+sail acquisition parameters*/
AcquistionParameterType m_AcquisitionParameters;
/** Satellite Relative spectral response*/
SatRSRPointerType m_SatRSR;
/** Simulate pixels with mask != 0 ==> m_InvertedMask = false; */
bool m_InvertedMask;
};
} // namespace Functor
// \code{TernaryFunctorImageFilterWithNBands} class is defined here.
// This class inherits form \doxygen{itk}{TernaryFunctorImageFilter} with additional nuber of band parameters.
// It's implementation is done to process Label, LAI, and mask image with Simulation functor.
template <class TInputImage1, class TInputImage2, class TInputImage3, class TOutputImage, class TFunctor>
class ITK_EXPORT TernaryFunctorImageFilterWithNBands : public itk::TernaryFunctorImageFilter<TInputImage1, TInputImage2, TInputImage3, TOutputImage, TFunctor>
{
public:
using Self = TernaryFunctorImageFilterWithNBands<TInputImage1, TInputImage2, TInputImage3, TOutputImage, TFunctor>;
using Superclass = itk::TernaryFunctorImageFilter<TInputImage1, TInputImage2, TInputImage3, TOutputImage, TFunctor>;
using Pointer = itk::SmartPointer<Self>;
using ConstPointer = itk::SmartPointer<const Self>;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Macro defining the type*/
itkTypeMacro(TernaryFunctorImageFilterWithNBands, SuperClass);
/** Accessors for the number of bands*/
itkSetMacro(NumberOfOutputBands, unsigned int);
itkGetConstMacro(NumberOfOutputBands, unsigned int);
protected:
TernaryFunctorImageFilterWithNBands()
{
}
~TernaryFunctorImageFilterWithNBands() override
{
}
void GenerateOutputInformation() override
{
Superclass::GenerateOutputInformation();
this->GetOutput()->SetNumberOfComponentsPerPixel(m_NumberOfOutputBands);
}
private:
TernaryFunctorImageFilterWithNBands(const Self&) = delete;
void operator=(const Self&) = delete;
unsigned int m_NumberOfOutputBands;
};
} // namespace otb
int main(int argc, char* argv[])
{
char* cmifname = nullptr;
if (argc != 10)
{
if (argc == 11) // cloud mask filename optional parameter
{
cmifname = argv[10];
}
else
{
std::cerr << "Wrong Parameters " << std::endl;
return EXIT_FAILURE;
}
}
char* laiifname = argv[1];
char* outfname = argv[2];
char* lifname = argv[3];
char* mifname = argv[4];
char* lpfname = argv[5];
char* apfname = argv[6];
char* rsfname = argv[7];
unsigned int nbBands = static_cast<unsigned int>(atoi(argv[8]));
char* rootPath = argv[9];
// Read the label parameter file. It is assumed to have the form
// label 1 Cab Car CBrown Cw Cm N --> for vegetation classes
// label 0 /path/to/spectra/file --> for other classes
// input images typedef are presented below. This example uses \code{double} LAI image, \code{binary} mask and
// cloud mask, and \code{integer} label image
//
using LAIPixelType = double;
using LabelType = unsigned short;
using MaskPixelType = unsigned short;
using OutputPixelType = float;
// Image typedef
using LAIImageType = otb::Image<LAIPixelType, 2>;
using LabelImageType = otb::Image<LabelType, 2>;
using MaskImageType = otb::Image<MaskPixelType, 2>;
using SimulatedImageType = otb::VectorImage<OutputPixelType, 2>;
// reader typedef
using LAIReaderType = otb::ImageFileReader<LAIImageType>;
using LabelReaderType = otb::ImageFileReader<LabelImageType>;
using MaskReaderType = otb::ImageFileReader<MaskImageType>;
// Leaf parameters typedef is defined.
using LeafParametersType = otb::LeafParameters;
using LeafParametersPointerType = LeafParametersType::Pointer;
using LabelParameterMapType = std::map<LabelType, LeafParametersPointerType>;
// Sensor spectral response typedef is defined
using PrecisionType = double;
using SpectraType = std::vector<PrecisionType>;
using SpectraParameterType = std::map<LabelType, SpectraType>;
// Acquisition response typedef is defined
using AcquistionParsType = std::map<std::string, double>;
// Satellite typedef is defined
using SatRSRType = otb::SatelliteRSR<PrecisionType, PrecisionType>;
// Filter type is the specific \code{TernaryFunctorImageFilterWithNBands} defined below with specific functor.
using SimuFunctorType = otb::Functor::ProsailSimulatorFunctor<LAIPixelType, LabelType, MaskPixelType, SimulatedImageType::PixelType, SpectraParameterType,
LabelParameterMapType, AcquistionParsType, SatRSRType>;
using SimulatorType = otb::TernaryFunctorImageFilterWithNBands<LAIImageType, LabelImageType, MaskImageType, SimulatedImageType, SimuFunctorType>;
// Read the acquisition parameter file which is like
// Angl val
// PSoil val
// Skyl val
// HSpot val
// TTS val
// TTO val
// PSI val
// Acquisition parameters are loaded using text file. A detailed definition of acquisition parameters can
// be found in class \doxygen{otb}{SailModel}.
AcquistionParsType acquistionPars;
acquistionPars[std::string("Angl")] = 0.0;
acquistionPars[std::string("PSoil")] = 0.0;
acquistionPars[std::string("Skyl")] = 0.0;
acquistionPars[std::string("HSpot")] = 0.0;
acquistionPars[std::string("TTS")] = 0.0;
acquistionPars[std::string("TTO")] = 0.0;
acquistionPars[std::string("PSI")] = 0.0;
std::ifstream acquistionParsFile;
try
{
acquistionParsFile.open(apfname);
}
catch (...)
{
std::cerr << "Could not open file " << apfname << std::endl;
return EXIT_FAILURE;
}
// unsigned int acPar = 0;
while (acquistionParsFile.good())
{
std::string line;
std::getline(acquistionParsFile, line);
std::stringstream ss(line);
std::string parName;
ss >> parName;
double parValue;
ss >> parValue;
acquistionPars[parName] = parValue;
}
acquistionParsFile.close();
// Label parameters are loaded using text file.
// Two type of object characteristic can be found. If label corresponds to vegetation class,
// then leaf parameters are loaded.
// A detailed definition of leaf parameters can be found in class \doxygen{otb}{LeafParameters} class.
// Otherwise object reflectance is generated from $400$ to $2400nm$ using \href{http://speclib.jpl.nasa.gov/}{Aster database}.
LabelParameterMapType labelParameters;
std::ifstream labelParsFile;
SpectraParameterType spectraParameters;
try
{
labelParsFile.open(lpfname, std::ifstream::in);
}
catch (...)
{
std::cerr << "Could not open file " << lpfname << std::endl;
return EXIT_FAILURE;
}
while (labelParsFile.good())
{
char fileLine[256];
labelParsFile.getline(fileLine, 256);
if (fileLine[0] != '#')
{
std::stringstream ss(fileLine);
unsigned short label;
ss >> label;
unsigned short paramsOrSpectra;
ss >> paramsOrSpectra;
if (paramsOrSpectra == 1)
{
double Cab;
ss >> Cab;
double Car;
ss >> Car;
double CBrown;
ss >> CBrown;
double Cw;
ss >> Cw;
double Cm;
ss >> Cm;
double N;
ss >> N;
LeafParametersType::Pointer leafParams = LeafParametersType::New();
leafParams->SetCab(Cab);
leafParams->SetCar(Car);
leafParams->SetCBrown(CBrown);
leafParams->SetCw(Cw);
leafParams->SetCm(Cm);
leafParams->SetN(N);
labelParameters[label] = leafParams;
}
else
{
std::string spectraFilename = rootPath;
ss >> spectraFilename;
spectraFilename = rootPath + spectraFilename;
using ResponseType = otb::SpectralResponse<PrecisionType, PrecisionType>;
ResponseType::Pointer resp = ResponseType::New();
// Coefficient 100 since Aster database is given in % reflectance
resp->Load(spectraFilename, 100.0);
SpectraType spec;
for (unsigned int i = 0; i < SimuFunctorType::SimNbBands; i++)
// Prosail starts at 400 and lambda in Aster DB is in micrometers
spec.push_back(static_cast<PrecisionType>((*resp)((i + 400.0) / 1000.0)));
spectraParameters[label] = spec;
}
}
}
labelParsFile.close();
// LAI image is read.
LAIReaderType::Pointer laiReader = LAIReaderType::New();
laiReader->SetFileName(laiifname);
laiReader->Update();
LAIImageType::Pointer laiImage = laiReader->GetOutput();
// Label image is then read. Label image is processed using \code{ImageUniqueValuesCalculator} in order to check if all the labels are present in the
// labelParameters file.
LabelReaderType::Pointer labelReader = LabelReaderType::New();
labelReader->SetFileName(lifname);
labelReader->Update();
LabelImageType::Pointer labelImage = labelReader->GetOutput();
using UniqueCalculatorType = otb::ImageUniqueValuesCalculator<LabelImageType>;
UniqueCalculatorType::Pointer uniqueCalculator = UniqueCalculatorType::New();
uniqueCalculator->SetImage(labelImage);
UniqueCalculatorType::ArrayType uniqueVals = uniqueCalculator->GetUniqueValues();
if (uniqueVals.empty())
{
std::cerr << "No label value found!" << std::endl;
return EXIT_FAILURE;
}
std::cout << "Labels are " << std::endl;
UniqueCalculatorType::ArrayType::const_iterator uvIt = uniqueVals.begin();
while (uvIt != uniqueVals.end())
{
std::cout << (*uvIt) << ", ";
++uvIt;
}
std::cout << std::endl;
uvIt = uniqueVals.begin();
while (uvIt != uniqueVals.end())
{
if (labelParameters.find(static_cast<LabelType>(*uvIt)) == labelParameters.end() &&
spectraParameters.find(static_cast<LabelType>(*uvIt)) == spectraParameters.end() && static_cast<LabelType>(*uvIt) != 0)
{
std::cout << "label " << (*uvIt) << " not found in " << lpfname << std::endl;
return EXIT_FAILURE;
}
++uvIt;
}
// Mask image is read. If cloud mask is filename is given, a new mask image is generated with masks concatenation.
MaskReaderType::Pointer miReader = MaskReaderType::New();
miReader->SetFileName(mifname);
miReader->UpdateOutputInformation();
MaskImageType::Pointer maskImage = miReader->GetOutput();
if (cmifname != nullptr)
{
MaskReaderType::Pointer cmiReader = MaskReaderType::New();
cmiReader->SetFileName(cmifname);
cmiReader->UpdateOutputInformation();
using OrType = itk::OrImageFilter<MaskImageType, MaskImageType, MaskImageType>;
OrType::Pointer orfilter = OrType::New();
orfilter->SetInput1(miReader->GetOutput());
orfilter->SetInput2(cmiReader->GetOutput());
orfilter->Update();
maskImage = orfilter->GetOutput();
}
// A test is done. All images must have the same size.
if (laiImage->GetLargestPossibleRegion().GetSize()[0] != labelImage->GetLargestPossibleRegion().GetSize()[0] ||
laiImage->GetLargestPossibleRegion().GetSize()[1] != labelImage->GetLargestPossibleRegion().GetSize()[1] ||
laiImage->GetLargestPossibleRegion().GetSize()[0] != maskImage->GetLargestPossibleRegion().GetSize()[0] ||
laiImage->GetLargestPossibleRegion().GetSize()[1] != maskImage->GetLargestPossibleRegion().GetSize()[1])
{
std::cerr << "Image of labels, mask and LAI image must have the same size" << std::endl;
return EXIT_FAILURE;
}
// Satellite RSR (Reduced Spectral Response) is defined using filename and band number given by command line arguments.
SatRSRType::Pointer satRSR = SatRSRType::New();
satRSR->SetNbBands(nbBands);
satRSR->SetSortBands(false);
satRSR->Load(rsfname);
for (unsigned int i = 0; i < nbBands; ++i)
std::cout << i << " " << (satRSR->GetRSR())[i]->GetInterval().first << " " << (satRSR->GetRSR())[i]->GetInterval().second << std::endl;
// At this step all initialization have been done. The next step is to implement and initialize simulation functor \code{ProsailSimulatorFunctor}.
SimuFunctorType simuFunctor;
simuFunctor.SetLabelParameters(labelParameters);
simuFunctor.SetLabelSpectra(spectraParameters);
simuFunctor.SetAcquisitionParameters(acquistionPars);
simuFunctor.SetRSR(satRSR);
simuFunctor.SetInvertedMask(true);
// Inputs and Functor are plugged to simulator filter.
SimulatorType::Pointer simulator = SimulatorType::New();
simulator->SetInput1(laiImage);
simulator->SetInput2(labelImage);
simulator->SetInput3(maskImage);
simulator->SetFunctor(simuFunctor);
simulator->SetNumberOfOutputBands(nbBands);
// The invocation of the \code{Update()} method triggers the
// execution of the pipeline.
simulator->Update();
// Write output image to disk
using WriterType = otb::ImageFileWriter<SimulatedImageType>;
WriterType::Pointer writer = WriterType::New();
writer->SetFileName(outfname);
writer->SetInput(simulator->GetOutput());
// writer->SetBufferNumberOfLinesDivisions(nbStreams);
otb::StandardWriterWatcher watcher(writer, simulator, "Simulation");
writer->Update();
return EXIT_SUCCESS;
}