MeanShiftSegmentationFilterExample.cxxΒΆ

This example demonstrates the use of the otb::MeanShiftSegmentationFilter class which implements filtering and clustering using the mean shift algorithm. For a given pixel, the mean shift will build a set of neighboring pixels within a given spatial radius and a color range. The spatial and color center of this set is then computed and the algorithm iterates with this new spatial and color center. The Mean Shift can be used for edge-preserving smoothing, or for clustering.

image1 image2 image3
Original image, image filtered by mean shift after clustering, and labeled image.

Example usage:

./MeanShiftSegmentationFilterExample Input/ROI_QB_MUL_1.png \
                                     Output/MSLabeledOutput.tif \
                                     Output/MSClusteredOutput.tif \
                                     Output/MSLabeledOutput-pretty.png \
                                     Output/MSClusteredOutput-pretty.png \
                                     16 \
                                     16 \
                                     100 \
                                     100 \
                                     0.1

Example source code (MeanShiftSegmentationFilterExample.cxx):

#include "otbVectorImage.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "otbImageFileWriter.h"
#include "otbPrintableImageFilter.h"
#include "itkScalarToRGBPixelFunctor.h"
#include "itkUnaryFunctorImageFilter.h"
#include "otbMeanShiftSegmentationFilter.h"

int main(int argc, char* argv[])
{
  if (argc != 11)
  {
    std::cerr << "Usage: " << argv[0] << " infname labeledfname clusteredfname labeledpretty clusteredpretty "
              << "spatialRadius rangeRadius minRegionSize maxiter thres" << std::endl;
    return EXIT_FAILURE;
  }

  const char*        infname         = argv[1];
  const char*        labeledfname    = argv[2];
  const char*        clusteredfname  = argv[3];
  const char*        labeledpretty   = argv[4];
  const char*        clusteredpretty = argv[5];
  const unsigned int spatialRadius   = atoi(argv[6]);
  const double       rangeRadius     = atof(argv[7]);
  const unsigned int minRegionSize   = atoi(argv[8]);
  const unsigned int maxiter         = atoi(argv[9]);
  const double       thres           = atof(argv[10]);

  const unsigned int Dimension = 2;

  using PixelType      = float;
  using LabelPixelType = unsigned int;
  using ColorPixelType = itk::RGBPixel<unsigned char>;

  using ImageType      = otb::VectorImage<PixelType, Dimension>;
  using LabelImageType = otb::Image<LabelPixelType, Dimension>;
  using RGBImageType   = otb::Image<ColorPixelType, Dimension>;

  using ReaderType      = otb::ImageFileReader<ImageType>;
  using WriterType      = otb::ImageFileWriter<ImageType>;
  using LabelWriterType = otb::ImageFileWriter<LabelImageType>;

  using FilterType = otb::MeanShiftSegmentationFilter<ImageType, LabelImageType, ImageType>;

  // We instantiate the filter, the reader, and 2 writers (for the
  // labeled and clustered images).

  FilterType::Pointer      filter  = FilterType::New();
  ReaderType::Pointer      reader  = ReaderType::New();
  WriterType::Pointer      writer1 = WriterType::New();
  LabelWriterType::Pointer writer2 = LabelWriterType::New();

  // We set the file names for the reader and the writers:
  reader->SetFileName(infname);
  writer1->SetFileName(clusteredfname);
  writer2->SetFileName(labeledfname);

  // We can now set the parameters for the filter. There are 3 main
  // parameters: the spatial radius used for defining the neighborhood,
  // the range radius used for defining the interval in the color space
  // and the minimum size for the regions to be kept after clustering.

  filter->SetSpatialBandwidth(spatialRadius);
  filter->SetRangeBandwidth(rangeRadius);
  filter->SetMinRegionSize(minRegionSize);

  // Two another parameters can be set: the maximum iteration number, which
  // defines maximum number of iteration until convergence.  Algorithm
  // iterative scheme will stop if convergence hasn't been reached after the
  // maximum number of iterations.  Threshold parameter defines mean-shift
  // vector convergence value. Algorithm iterative scheme will stop if
  // mean-shift vector is below this threshold or if iteration number reached
  // maximum number of iterations.

  filter->SetMaxIterationNumber(maxiter);
  filter->SetThreshold(thres);
  // We can now plug the pipeline and run it.

  filter->SetInput(reader->GetOutput());
  writer1->SetInput(filter->GetClusteredOutput());
  writer2->SetInput(filter->GetLabelOutput());

  writer1->Update();
  writer2->Update();

  using PrintableFilterType                         = otb::PrintableImageFilter<ImageType>;
  PrintableFilterType::Pointer printableImageFilter = PrintableFilterType::New();

  printableImageFilter->SetChannel(1);
  printableImageFilter->SetChannel(2);
  printableImageFilter->SetChannel(3);

  using OutputImageType  = PrintableFilterType::OutputImageType;
  using PrettyWriterType = otb::ImageFileWriter<OutputImageType>;

  PrettyWriterType::Pointer prettyWriter = PrettyWriterType::New();

  printableImageFilter->SetInput(filter->GetClusteredOutput());
  prettyWriter->SetFileName(clusteredpretty);
  prettyWriter->SetInput(printableImageFilter->GetOutput());
  prettyWriter->Update();

  using LabelRGBWriterType = otb::ImageFileWriter<RGBImageType>;

  LabelRGBWriterType::Pointer labelRGBWriter = LabelRGBWriterType::New();

  // Label to RGB image
  using FunctorType                        = itk::Functor::ScalarToRGBPixelFunctor<LabelPixelType>;
  using ColorLabelFilterType               = itk::UnaryFunctorImageFilter<LabelImageType, RGBImageType, FunctorType>;
  ColorLabelFilterType::Pointer labelToRGB = ColorLabelFilterType::New();

  labelToRGB->SetInput(filter->GetLabelOutput());

  labelRGBWriter->SetFileName(labeledpretty);
  labelRGBWriter->SetInput(labelToRGB->GetOutput());
  labelRGBWriter->Update();
}