Smoothing - Smoothing¶
Apply a smoothing filter to an image
Detailed description¶
This application applies a smoothing filter to an image. Three methodes can be used : a gaussian filter , a mean filter , or an anisotropic diffusion using the Perona-Malik algorithm.
Parameters¶
This section describes in details the parameters available for this application. Table [1] presents a summary of these parameters and the parameters keys to be used in command-line and programming languages. Application key is Smoothing .
[1] | Table: Parameters table for Smoothing. |
Parameter Key | Parameter Name | Parameter Type |
---|---|---|
in | Input Image | Input image |
out | Output Image | Output image |
ram | Available RAM (Mb) | Int |
type | Smoothing Type | Choices |
type mean | Mean | Choice |
type gaussian | Gaussian | Choice |
type anidif | Anisotropic Diffusion | Choice |
type.mean.radius | Radius | Int |
type.gaussian.radius | Radius | Float |
type.anidif.timestep | Time Step | Float |
type.anidif.nbiter | Nb Iterations | Int |
type.anidif.conductance | Conductance | Float |
inxml | Load otb application from xml file | XML input parameters file |
outxml | Save otb application to xml file | XML output parameters file |
Input Image: Input image to smooth.
Output Image: Output smoothed image.
Available RAM (Mb): Available memory for processing (in MB).
Smoothing Type: Smoothing kernel to apply. Available choices are:
- Mean
- Radius: Kernel’s radius (in pixels).
- Gaussian
- Radius: Standard deviation of the gaussian kernel used to filter the image.
- Anisotropic Diffusion
- Time Step: Time step that will be used to discretize the diffusion equation.
- Nb Iterations: Number of iterations needed to get the result.
- Conductance: Controls the sensitivity of the conductance term in the diffusion equation. The lower it is the stronger the features will be preserved.
Load otb application from xml file: Load otb application from xml file.
Save otb application to xml file: Save otb application to xml file.
Examples¶
Example 1: |
---|
Image smoothing using a mean filter.To run this example in command-line, use the following:
otbcli_Smoothing -in Romania_Extract.tif -out smoothedImage_mean.png uchar -type mean
To run this example from Python, use the following code snippet:
#!/usr/bin/python
# Import the otb applications package
import otbApplication
# The following line creates an instance of the Smoothing application
Smoothing = otbApplication.Registry.CreateApplication("Smoothing")
# The following lines set all the application parameters:
Smoothing.SetParameterString("in", "Romania_Extract.tif")
Smoothing.SetParameterString("out", "smoothedImage_mean.png")
Smoothing.SetParameterOutputImagePixelType("out", 1)
Smoothing.SetParameterString("type","mean")
# The following line execute the application
Smoothing.ExecuteAndWriteOutput()
Example 2: |
---|
Image smoothing using an anisotropic diffusion filter.To run this example in command-line, use the following:
otbcli_Smoothing -in Romania_Extract.tif -out smoothedImage_ani.png float -type anidif -type.anidif.timestep 0.1 -type.anidif.nbiter 5 -type.anidif.conductance 1.5
To run this example from Python, use the following code snippet:
#!/usr/bin/python
# Import the otb applications package
import otbApplication
# The following line creates an instance of the Smoothing application
Smoothing = otbApplication.Registry.CreateApplication("Smoothing")
# The following lines set all the application parameters:
Smoothing.SetParameterString("in", "Romania_Extract.tif")
Smoothing.SetParameterString("out", "smoothedImage_ani.png")
Smoothing.SetParameterOutputImagePixelType("out", 6)
Smoothing.SetParameterString("type","anidif")
Smoothing.SetParameterFloat("type.anidif.timestep", 0.1)
Smoothing.SetParameterInt("type.anidif.nbiter", 5)
Smoothing.SetParameterFloat("type.anidif.conductance", 1.5)
# The following line execute the application
Smoothing.ExecuteAndWriteOutput()
Limitations¶
None
Authors¶
This application has been written by OTB-Team.