HaralickTextureExtraction - Haralick Texture Extraction

Computes Haralick textural features on the selected channel of the input image

Detailed description

This application computes three sets of Haralick features [1][2].
  • simple: a set of 8 local Haralick features: Energy (texture uniformity) , Entropy (measure of randomness of intensity image), Correlation (how correlated a pixel is to its neighborhood), Inverse Difference Moment (measures the texture homogeneity), Inertia (intensity contrast between a pixel and its neighborhood), Cluster Shade, Cluster Prominence, Haralick Correlation;
  • advanced: a set of 10 advanced Haralick features : Mean, Variance (measures the texture heterogeneity), Dissimilarity, Sum Average, Sum Variance, Sum Entropy, Difference of Entropies, Difference of Variances, IC1, IC2;
  • higher: a set of 11 higher Haralick features : Short Run Emphasis (measures the texture sharpness), Long Run Emphasis (measures the texture roughness), Grey-Level Nonuniformity, Run Length Nonuniformity, Run Percentage (measures the texture sharpness homogeneity), Low Grey-Level Run Emphasis, High Grey-Level Run Emphasis, Short Run Low Grey-Level Emphasis, Short Run High Grey-Level Emphasis, Long Run Low Grey-Level Emphasis and Long Run High Grey-Level Emphasis.

Parameters

This section describes in details the parameters available for this application. Table [1] presents a summary of these parameters and the parameters keys to be used in command-line and programming languages. Application key is HaralickTextureExtraction .

[1]Table: Parameters table for Haralick Texture Extraction.
Parameter Key Parameter Name Parameter Type
in Input Image Input image
channel Selected Channel Int
step Computation step Int
ram Available RAM (Mb) Int
parameters Texture feature parameters Group
parameters.xrad X Radius Int
parameters.yrad Y Radius Int
parameters.xoff X Offset Int
parameters.yoff Y Offset Int
parameters.min Image Minimum Float
parameters.max Image Maximum Float
parameters.nbbin Histogram number of bin Int
texture Texture Set Selection Choices
texture simple Simple Haralick Texture Features Choice
texture advanced Advanced Texture Features Choice
texture higher Higher Order Texture Features Choice
out Output Image Output image
inxml Load otb application from xml file XML input parameters file
outxml Save otb application to xml file XML output parameters file

Input Image: The input image to compute the features on.

Selected Channel: The selected channel index.

Computation step: Step (in pixels) to compute output texture values. The first computed pixel position is shifted by (step-1)/2 in both directions.

Available RAM (Mb): Available memory for processing (in MB).

[Texture feature parameters]: This group of parameters allows one to define texture parameters.

  • X Radius: X Radius.
  • Y Radius: Y Radius.
  • X Offset: X Offset.
  • Y Offset: Y Offset.
  • Image Minimum: Image Minimum.
  • Image Maximum: Image Maximum.
  • Histogram number of bin: Histogram number of bin.

Texture Set Selection: Choice of The Texture Set. Available choices are:

  • Simple Haralick Texture Features: This group of parameters defines the 8 local Haralick texture feature output image. The image channels are: Energy, Entropy, Correlation, Inverse Difference Moment, Inertia, Cluster Shade, Cluster Prominence and Haralick Correlation.
  • Advanced Texture Features: This group of parameters defines the 10 advanced texture feature output image. The image channels are: Mean, Variance, Dissimilarity, Sum Average, Sum Variance, Sum Entropy, Difference of Entropies, Difference of Variances, IC1 and IC2.
  • Higher Order Texture Features: This group of parameters defines the 11 higher order texture feature output image. The image channels are: Short Run Emphasis, Long Run Emphasis, Grey-Level Nonuniformity, Run Length Nonuniformity, Run Percentage, Low Grey-Level Run Emphasis, High Grey-Level Run Emphasis, Short Run Low Grey-Level Emphasis, Short Run High Grey-Level Emphasis, Long Run Low Grey-Level Emphasis and Long Run High Grey-Level Emphasis.

Output Image: Output image containing the selected texture features.

Load otb application from xml file: Load otb application from xml file.

Save otb application to xml file: Save otb application to xml file.

Example

To run this example in command-line, use the following:

otbcli_HaralickTextureExtraction -in qb_RoadExtract.tif -channel 2 -parameters.xrad 3 -parameters.yrad 3 -texture simple -out HaralickTextures.tif

To run this example from Python, use the following code snippet:

#!/usr/bin/python

# Import the otb applications package
import otbApplication

# The following line creates an instance of the HaralickTextureExtraction application
HaralickTextureExtraction = otbApplication.Registry.CreateApplication("HaralickTextureExtraction")

# The following lines set all the application parameters:
HaralickTextureExtraction.SetParameterString("in", "qb_RoadExtract.tif")

HaralickTextureExtraction.SetParameterInt("channel", 2)

HaralickTextureExtraction.SetParameterInt("parameters.xrad", 3)

HaralickTextureExtraction.SetParameterInt("parameters.yrad", 3)

HaralickTextureExtraction.SetParameterString("texture","simple")

HaralickTextureExtraction.SetParameterString("out", "HaralickTextures.tif")

# The following line execute the application
HaralickTextureExtraction.ExecuteAndWriteOutput()

Limitations

The computation of the features is based on a Gray Level Co-occurrence matrix (GLCM) from the quantized input image. Consequently the quantization parameters (min, max, nbbin) must be appropriate to the range of the pixel values.

Authors

This application has been written by OTB-Team.

See Also

These additional resources can be useful for further information:
[1] HARALICK, Robert M., SHANMUGAM, Karthikeyan, et al. Textural features for image classification. IEEE Transactions on systems, man, and cybernetics, 1973, no 6, p. 610-621.
[2] otbScalarImageToTexturesFilter, otbScalarImageToAdvancedTexturesFilter and otbScalarImageToHigherOrderTexturesFilter classes